2013
Autores
Ribeiro, C; Pinto, T; Morais, H; Vale, Z; Santos, G;
Publicação
2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013
Abstract
Power systems have been through deep changes in recent years, namely due to the operation of competitive electricity markets in the scope the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new type of player that allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles (V2G) and consumers) to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players' benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets. © 2013 IEEE.
2014
Autores
Sousa, T; Vale, Z; Carvalho, JP; Pinto, T; Morais, H;
Publicação
ENERGY
Abstract
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
2016
Autores
Faia, R; Pinto, T; Vale, Z;
Publicação
Advances in Intelligent Systems and Computing - Trends in Practical Applications of Scalable Multi-Agent Systems, the PAAMS Collection
Abstract
2016
Autores
Pinto, T; Sousa, TM; Morais, H; Praca, I; Vale, Z;
Publicação
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
Electricity markets are becoming more competitive, to some extent due to the increasing number of players that have moved from other sectors to the power industry. This is essentially resulting from incentives provided to distributed generation. Relevant changes in this domain are still occurring, such as the extension of national and regional markets to continental scales. Decision support tools have thereby become essential to help electricity market players in their negotiation process. This paper presents a metalearner to support electricity market players in bidding definition. The proposed metalearner uses a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms already implemented in ALBidS (Adaptive Learning strategic Bidding System). The proposed metalearner considers different weights for each strategy, based on their individual performance. The metalearner's performance is analysed in scenarios based on real electricity markets data using MASCEM (Multi-Agent Simulator for Competitive Electricity Markets). Results show that the proposed metalearner is able to provide higher profits to market players when compared to other current methodologies and that results improve over time, as consequence of its learning process.
2016
Autores
Pinto, T; Sousa, TM; Praça, I; Vale, Z; Morais, H;
Publicação
Neurocomputing
Abstract
2016
Autores
Pinto, T; Sousa, TM; Praca, I; Vale, Z; Morais, H;
Publicação
NEUROCOMPUTING
Abstract
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors' research group has developed a multi-agent system: Multi-Agent System for Competitive Electricity Markets (MASCEM), which simulates the electricity markets environment. MASCEM is integrated with Adaptive Learning Strategic Bidding System (ALBidS) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network (ANN), originating promising results: an effective electricity market price forecast in a fast execution time. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.