2023
Autores
Oliveira, HS; Oliveira, HP;
Publicação
SENSORS
Abstract
Forecasting energy consumption models allow for improvements in building performance and reduce energy consumption. Energy efficiency has become a pressing concern in recent years due to the increasing energy demand and concerns over climate change. This paper addresses the energy consumption forecast as a crucial ingredient in the technology to optimize building system operations and identifies energy efficiency upgrades. The work proposes a modified multi-head transformer model focused on multi-variable time series through a learnable weighting feature attention matrix to combine all input variables and forecast building energy consumption properly. The proposed multivariate transformer-based model is compared with two other recurrent neural network models, showing a robust performance while exhibiting a lower mean absolute percentage error. Overall, this paper highlights the superior performance of the modified transformer-based model for the energy consumption forecast in a multivariate step, allowing it to be incorporated in future forecasting tasks, allowing for the tracing of future energy consumption scenarios according to the current building usage, playing a significant role in creating a more sustainable and energy-efficient building usage.
2023
Autores
Oliveira, HS; Ribeiro, PP; Oliveira, HP;
Publicação
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings
Abstract
2025
Autores
Oliveira, S;
Publicação
Journal of Reliable Intelligent Environments
Abstract
Predicting and controlling crowd dynamics in emergencies is one of the main objectives of simulated emergency exercises. However, during emergency exercises, there is often a lack of sense of danger by the actors involved and concerns about exposing real people to potentially dangerous environments. These problems impose limitations in running an emergency drill, harming the collection of valuable information for posterior analysis and decision-making. This work aims to mitigate these problems by using Agent Based Modelling (ABM) simulator to deepen the comprehension of human actions when exposed to a sudden variation in extensive crowded environmental conditions and how evacuation strategies affect evacuation performance. To assess the impact of the evacuation strategy employed, we propose a modified informed leader-flowing approach and compare it with common evacuation strategies in a simulated environment, replicating stadium benches with narrow corridors leading to different exit points. The objective is to determine the impact of each set of configurations and evacuation strategies and compare them against other established ones. Our experiments determined that agents following the crowd generally lead to a higher number of victims due to the rise of herding phenomena near the exits, which was significantly reduced when agents were guided towards the exit via knowing the exit beforehand or following leader agent with real-time information regarding exit location and exit current state, proving that relevant and controlled information in combination with Follow Leader strategies can be crucial in an emergency evacuation scenario with limited evacuation exit capabi and distribution. © The Author(s) 2024.
2025
Autores
Barbosa, RZ; Oliveira, HS;
Publicação
IEEE ACCESS
Abstract
This paper explores advancements in Video Anomaly Detection (VAD), combining theoretical insights with practical solutions to address model limitations. Through comprehensive experimental analysis, the study examines the role of feature representations, sampling strategies, and curriculum learning in enhancing VAD performance. Key findings include the impact of class imbalance on the Cross-Modal Awareness-Local Arousal (CMALA) architecture and the effectiveness of techniques like pseudo-curriculum learning in mitigating noisy classes, such as Car Accident. Novel strategies like the Sample-Batch Selection (SBS) dynamic segment selection and pre-trained image-text models, including Contrastive Language-Image Pre-training (CLIP) and ViTamin encoder, significantly improve anomaly detection. The research underscores the potential of multimodal VAD, highlighting the integration of audio and visual modalities and the development of multimodal fusion techniques. To support this evolution, the study proposes a Unified WorkStation 4 VAD (UWS4VAD) to streamline research workflows and introduces a new VAD benchmark incorporating multimodal data and textual information. The work envisions enhanced anomaly interpretation and performance by leveraging joint representation learning and Large Language Models (LLMs). The findings set the stage for future advancements, advocating for large-scale pre-training on audio-visual datasets and shifting toward a more integrated, multimodal approach to VADs. Source code of the project available at https://github.com/zuble/uws4vad
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.