Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Cristiano Pires Patrício

2026

Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models

Autores
Patrício, C; Barbano, CA; Fiandrotti, A; Renzulli, R; Grangetto, M; Teixeira, LF; Neves, JC;

Publicação
PATTERN RECOGNITION LETTERS

Abstract
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) learns a reference representation of healthy anatomy, eliminating the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we bridge CA and UAD by reformulating contrastive analysis principles for the unsupervised setting. We propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, outperforming baseline methods in anomaly localization on the NOVA benchmark.

  • 2
  • 2