2026
Autores
Patrício, C; Barbano, CA; Fiandrotti, A; Renzulli, R; Grangetto, M; Teixeira, LF; Neves, JC;
Publicação
PATTERN RECOGNITION LETTERS
Abstract
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) learns a reference representation of healthy anatomy, eliminating the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we bridge CA and UAD by reformulating contrastive analysis principles for the unsupervised setting. We propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, outperforming baseline methods in anomaly localization on the NOVA benchmark.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.