Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2026

Sensors: The Building Blocks of a Technology-Driven Future

Autores
Farahi, F; Santos, JL;

Publicação
IEEE Sensors Reviews

Abstract

2026

Optical Harmonic Vernier Effect: Conditions Required for Effective Sensitivity Amplification

Autores
Robalinho, P; Piaia, V; Ribeiro, AL; Silva, S; Frazao, O;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
This paper presents the conditions required for effective sensitivity amplification in the optical harmonic Vernier effect. Two distinct cases are analyzed: in the first, the sensor cavity is the shortest, while in the second, it is the longest. Based on the proposed theoretical model, supported by experimental results, it is concluded that, in the first case, the sensitivity associated with the spectral extremes increases with the order of the harmonic states. In contrast, in the second case, the sensitivity at the spectral extremes remains constant, regardless of the harmonic order. To evaluate the effectiveness of applying the optical Vernier effect and to differentiate between the two cases, a new formulation of the magnification factor (M-factor) is introduced. This leads to the definition of a novel figure of merit for the optical Vernier effect, denoted as (FoM(Vernier)). In Case 1, where harmonics are generated by increasing the reference cavity, the figure of merit assumes a value of (m + 1). In Case 2, where harmonics are generated by increasing the sensor cavity, the figure of merit remains constant at 1, regardless of the state order (whether fundamental or harmonic). This study also concludes that the observed increase in sensitivity is apparent rather than intrinsic, as the sensitivity curve produced by the optical Vernier effect mirrors that of a conventional interferometer.

2026

Virtual Vernier Effect Harmonics for Enhanced Fabry-Perot Interferometer Sensing

Autores
Robalinho, P; Piaia, V; Lobo-Ribeiro, A; Silva, S; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
The present letter proposes the implementation of Vernier-effect harmonics through the virtualization of different reference cavities. A Fabry-Perot interferometer (FPI), actuated by a piezoelectric transducer (PZT), was employed as the sensing element. Subsequently, the sensitivity of the dynamic range was investigated for both the individual interferometer and the implementation of the Virtual Vernier effect. A sensitivity of (8 +/- 0.05)x10(-3) nm/nm was achieved for the single sensor measurement. Considering the implementation of the Vernier effect, the following sensitivities were obtained: (65.6 +/- 0.08)x10(-3) nm/nm for the fundamental, (132 +/- 1)x10-3 nm/nm for the first harmonic, and (192 +/- 1)x10(-3) nm/nm for the second harmonic. Furthermore, a maximum dynamic range of 11.25 mu m and a maximum resolution of 5 pm were achieved. This study highlights the advantages of simultaneously measuring both a single sensor cavity and a harmonic of the Virtual Vernier effect, in order to achieve large dynamic ranges along with high resolution.

2026

Multiple amplitude wavelength modulation spectroscopy for concomitant measurement of pressure and concentration of methane

Autores
Lorenzo Santini; Luís C. C. Coelho; Claudio Floridia;

Publicação
Scientific Reports

Abstract

2025

Prevalence of Lp(a) in a real-world Portuguese cohort: implications for cardiovascular risk assessment

Autores
Saraiva, M; Garcez, J; da Silva, BT; Ferreira, IP; Oliveira, JC; Palma, I;

Publicação
LIPIDS IN HEALTH AND DISEASE

Abstract
Background Cardiovascular disease (CVD) is a major cause of mortality worldwide, necessitating more refined strategies for risk assessment. Recently, lipoprotein(a) [Lp(a)] has gained attention for its distinctive role in atherosclerosis, yet its prevalence and impact for cardiovascular risk assessment are not well-documented in the Portuguese population. This study aimed to characterize Lp(a) levels in a real-world Portuguese cohort, investigating its prevalence and association with CVD risk. Methods Retrospective and cross-sectional study of adults who underwent serum Lp(a) analysis in a Portuguese hospital between August 2018 and June 2022. Demographic and anthropometric data, laboratory values, relevant comorbidities and lipid-lowering medication were collected. Results Of 1134 participants, 28.7% had elevated Lp(a) levels (> 125 nmol/L). A higher prevalence was observed in those with atherosclerotic cardiovascular disease (ASCVD) (45.9%) or a family history of premature CVD (41.9%). Additionally, a significant association was found between elevated Lp(a) levels and traditional CVD risk factors, including hypertension, dyslipidemia, and diabetes mellitus. Among those classified as having low-to-moderate CVD risk by (Systematic COronary Risk Evaluation 2) SCORE2, 55.7% exhibited high Lp(a) levels (> 75 nmol/L), suggesting a potential higher risk of CVD disease. Conclusions The prevalence of elevated Lp(a) in Portugal, notably among those with ASCVD or premature CVD history, is concerning. This study underscores the potential of Lp(a) assessment for a more comprehensive approach to cardiovascular risk assessment. This could improve the stratification of CVD risk and identify individuals who could benefit from early intensive management of their risk factors, ultimately reducing the burden of CVD and cardiovascular-related mortality.

2025

Laser-Induced Breakdown Spectroscopy for surface analysis of solid-state anode-less battery

Autores
Capela, D; Baptista, MC; Gomes, BM; Jorge, PAS; Silva, NA; Braga, MH; Guimaraes, D;

Publicação
JOURNAL OF POWER SOURCES

Abstract
Solid-state batteries are prominent in today's research landscape due to their advantages in capacity and safety. This work explores anode-less all-solid-state batteries, a configuration with industrial benefits as it avoids handling alkali metal anodes, albeit with room for improvement. To elucidate the intricacies of these batteries, Laser-Induced Breakdown Spectroscopy (LIBS) served as a pivotal analytical tool, primarily focusing on the negative current collector surface where Li+ nucleation occurs from the Li-rich electrolyte. The use of a fiber-laser for breakdown spectroscopy offers advantages over conventional lasers by producing high beam quality, enabling minimal spot size, and ensuring excellent spatial resolution. LIBS is an asset to verify Li presence, discerning its source, assessing nucleation and distinguishing it from electrolyte-derived Li. For instance, in this work utilizing Li2.99Ba0.005ClO as the electrolyte, LIBS is crucial to elucidate the relationship between Li and other elements like Cl, Zn, or Fe, shedding light on key battery performance aspects. LIBS demonstrated a high potential for verifying in situ Li metal nucleation in anode-less cells. This study highlights its effectiveness in conceptual and product development and advanced quality testing. The application of a clustering method enhanced result interpretability and the distinction between electrolyte and in situ anode regions.

  • 1
  • 243