2025
Autores
Piaia,, V; , MR; Robalinho,, P; Silva,, S; Frazão,, O;
Publicação
Journal of Lightwave Technology
Abstract
The decoupling of temperature and refractive index measurements was achieved by exploiting the properties of the asymmetric spectrum generated by Fano resonance, resulting from the interference between the Bragg reflection of the grating and the Fresnel reflection at the fiber tip. This spectral asymmetry enabled the implementation of a combined wavelength-based and intensity-based interrogation scheme. By separating the influence of each parameter in the spectral response, it was possible to measure the refractive index independently, without interference from temperature variations. A refractive index sensor with a minimum detectable change of d = 1.2 × 10?4 RIU was demonstrated. In addition to introducing a novel structure that leverages Fano resonance, the sensor was also applied as an evaporation rate sensor. The results demonstrate its potential for a wide range of applications, serving as a foundation for the development of future optical sensing technologies. © 1983-2012 IEEE.
2025
Autores
Piaia, V; Robalinho, P; Soares, L; Novais, S; Ribeiro, AL; Frazao, O; Silva, S;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
A refractive index sensor was designed using a novel approach to sensing based on a cleaved standard fiber Bragg grating (FBG) at the grating region, which enables the FBG to interact with its surrounding environment. The sliced-FBG (SFBG) exhibits a variable phase shift in the reflection response due to the length of the last grating's pitch, which differs from the rest. At the SFBG, the signal is the result of interference between the reflected wave from the grating and the transmitted spectrum returned due to Fresnel reflection at the final pitch, and the intensity of this signal depends on the refractive index of the surrounding medium. Based on this phenomenon, an intensity-based refractive index sensor with self- referencing technique was employed in this experiment, whereby the grating peak maximum point served as the signal reference, while the minimum of the Fresnel peak from each measurement functioned as the signal input. The proposed sensor demonstrated the ability to measure refractive indices within the range of 1.333-1.339, with a resolution of approximate to 10(-3), and a minimum detectable value of 6x10(-4) RIU (the data yielded a linear response with R-2=0.990). This study presents an innovative data sensing approach compared to existing techniques found in literature, which typically employ wavelength variation in the reflected wave to extract the desired information.
2025
Autores
Robalinho, P; Piaia, V; Ribeiro, AL; Silva, S; Frazao, O;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
This work analyzes the sensitivity of an optical system consisting of two fiber Fabry-Perot ( FP) interferometers and the apparent increase in sensitivity due to the harmonics of the Vernier effect. Two scenarios are examined: (1) when the larger FP cavity acts as the sensor, and (2) when the smaller FP cavity acts as the sensor. The computation analysis reveals that in the first scenario, higher-order spectral harmonics yield greater sensitivity for maxima and minima of the same order. In the second scenario, however, the sensitivity remains constant and does not depend on the harmonic order. Moreover, it is demonstrated that the sensitivity curve is identical for both scenarios, regardless of the harmonic order. This outcome occurs because the use of spectral harmonics simply reduces the free-spectral range in certain situations, bringing the extrema closer to the maximum sensitivity condition (i.e., Delta L = 0) and thereby increasing sensitivity. Consequently, if points on the envelope other than maxima or minima are used, the sensitivity achieved is the same for both scenarios.
2025
Autores
Almeida, MAS; Pires, AL; Ramirez, JL; Malik, SB; de la Flor, S; Llobet, E; Pereira, AT; Pereira, AM;
Publicação
ADVANCED SCIENCE
Abstract
In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management. This study delves into a thermoelectric sensor e-tattoo designed for detailed skin temperature mapping. Utilizing a novel design, this sensor detects temperature variations across thermoelectric stripes, leveraging screen-printed films of p-type Bi0.35Sb1.65Te3, n-type Bi2Te2.8Se0.2, and poly(vinyl alcohol) (PVA) for enhanced thermoelectric and flexible properties. The application of a prototype printed thermoelectric device on temporary tattoo paper, a pioneering development in wearable health technology is demonstrated. This device, validated through numerical simulations, exhibits significant potential as a non-invasive tool for temperature monitoring, highlighting its value in health diagnostics and management.
2024
Autores
Marta, A; Ferreira, A; Couto, I; Neves, MM; Gomes, M; Oliveira, L; Soares, CA; Menéres, MJ; Lemos, C; Beirao, JM;
Publicação
CLINICAL OPHTHALMOLOGY
Abstract
Purpose: Inherited retinal diseases (IRDs) are a group of degenerative disorders of the retina, that can be potentially associated with changes in the anterior segment, but their prevalence and impact are not known. Exploring these concomitant ophthalmologic changes with biomechanical assessment may help identify other non-retina causes of vision loss in these patients, such as corneal ectasia or susceptibility to glaucoma. This study aimed to measure and compare corneal biomechanics in patients with and without IRDs. Methods: A total of 77 patients (154 eyes) with IRD were recruited as the study group. The control group consisted of 77 healthy adults (154 eyes) with matched age and sphere equivalents. All participants underwent a comprehensive assessment including corneal tomography (Pentacam (R)) and biomechanical assessment (Corvis ST (R)). A total of 4 second-generation biomechanical parameters and 3 indexes were collected: Ambrosio Relational Thickness (ARTh), Deflection Amplitude Ratio Max (DARM), Integrated Radius (IR) and Stiffness Parameter at Applanation (SP-A1), the final deviation value D of the Belin/Ambrosio Enhanced Ectasia Display (BADResults: For IRD patients, there was a higher DARM (p < 0.001), lower ARTh (p < 0.001), higher CBI (p < 0.001), higher TBI (p<0.001), and higher BAD-D (p < 0.001) compared to the control group. Regarding discrimination of healthy subjects and IRD patients, ARTh was the most sensitive parameter. Conclusion: The results showed that IRD patients tend to have softer corneal behaviour, compared to eyes without pathology, which may predispose patients to corneal ectasia or glaucoma development. ARTh could be used to screen IRD patients if a non-retina cause of vision loss is suspected.
2024
Autores
Rodrigues, HJB; Cardoso, MP; Miranda, CC; Romeiro, AF; Giraldi, MTR; Silva, AO; Costa, JCWA; Santos, JL; Guerreiro, A;
Publicação
2024 LATIN AMERICAN WORKSHOP ON OPTICAL FIBER SENSORS, LAWOFS 2024
Abstract
This paper presents the examination of a planar waveguide sensor featuring a bimetallic layer, revealing its potential applicability across both the visible and infrared spectrums. The bimetallic layer consists of adjacent gold and silver slabs positioned atop the waveguide's core. This arrangement demonstrates the activation of two distinct plasmon resonances, indicating promising prospects for multiparameter sensing applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.