Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2019

Developing tunable optical analogues using nematic liquid crystals

Autores
Ferreira, TD; Silva, NA; Guerreiro, A;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
This paper proposes the use of nematic liquid crystals as tunable setups to implement optical analogues of physical systems and phenomena that are hard or even impossible to study experimentally under controlled conditions. Optical analogues share the same physical model with the systems that they emulate and can be understood as a form of physical simulations or optical computation. However, their success relies not only on the existence of media with optical properties capable of emulating the models associated with the original system as they interact with light, but also on the possibility of being able to tune those properties in order to cover the multitude of conditions or range of parameters. In particular, the Schrodinger-Newton model is a good target for this kind of studies as it can describe a plethora of different phenomena in physics and can be implemented in the laboratory using optical analogues, usually using thermo-optical materials. However, such materials have limitations, and in this work we propose nematic liquid crystals as a more advantageous alternative. We discuss how nematic liquid crystals can be used as a tunable support medium for optical analogues of superfluids by analyzing the dispersion relation of light under specific conditions and using numerical simulations based on GPGPU supercomputing to verify our findings. Extending on this, we explore more direct manifestations of superfluid effects in nematic liquid crystals, such as drag-force cancellation in the superfluid regime and the possibility of creating a roton-minimum in the dispersion relation.

2019

Enhancing nanoplasmonic sensing with metallic nanowires: from D-type to suspended core fibres

Autores
dos Santos, DN; Guerreiro, A; Baptist, JM;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
This paper explores and compares three different plasmonic optical fibre sensor configurations, based on D-type and suspended core fibres combined with metallic nanowires, and investigates how their different geometrical parameters can affect the coupling between the guided optical mode supported by fibres and the localized plasmonic modes, and how that ultimately results in improved sensor performance. Fibre optical sensors based on plasmonic resonances with metallic nanostructures have revolutionized the field of optical sensing because they have permitted to obtain sharper and fine-tuned resonances with higher sensitivity. The essence for exploring the properties of localized plasmonic modes and their coupling with the optical guided mode depends not only on the choice of the materials employed in the device, but also on the geometry of the different components and their relative position, which ultimately determines the spatial distributions of optical power of the different modes and consequently their overlap and coupling. In this work, we use numerical simulations based on finite element methods to demonstrate the importance of shaping the features of the guided optical mode to promote the coupling with the localized modes, in the two types of fibres considered. The results clarify some of the fundamental aspects behind the operation of these devices and provide novel proposals for enhanced refractive index sensors.

2019

Evaluation of Nanoplasmonic Optical Fiber Sensors Based on D-Type and Suspended Core Fibers with Metallic Nanowires

Autores
Santos, D; Guerreiro, A; Baptista, JM;

Publicação
PHOTONICS

Abstract
The introduction of metallic nanostructures in optical fibers has revolutionized the field of plasmonic sensors since they produce sharper and fine-tuned resonances resulting in higher sensitivities and resolutions. This article evaluates the performance of three different plasmonic optical fiber sensors based on D-type and suspended core fibers with metallic nanowires. It addresses how their different materials, geometry of the components, and their relative position can influence the coupling between the localized plasmonic modes and the guided optical mode. It also evaluates how that affects the spatial distributions of optical power of the different modes and consequently their overlap and coupling, which ultimately impacts the sensor performance. In this work, we use numerical simulations based on finite element methods to validate the importance of tailoring the features of the guided optical mode to promote an enhanced coupling with the localized modes. The results in terms of sensitivity and resolution demonstrate the advantages of using suspended core fibers with metallic nanowires.

2019

High performance solver of the multidimensional generalized nonlinear Schrodinger equation with coupled fields

Autores
Ferreira, TD; Silva, NA; Guerreiro, A;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
We report on the development of numerical module for the HiLight simulation platform based on GPGPU supercomputing to solve a system of coupled fields governed by the Generalized Nonlinear Schrodinger Equation with local and/or nonlocal nonlinearities. This models plays an important role in describing a plethora of different phenomena in various areas of physics. In optics, this model was initially used to describe the propagation of light through local and/or nonlocal systems under the paraxial approximation, but more recently it has been extensively used as a support model to develop optical analogues. However, establishing the relation between the original system and the analogue, as well as, between their model and the actual experimental setup is not an easy task. First and foremost because in most cases the governing equations are nonintegrable, preventing from obtaining analytical solutions and hindering the optimization of the experiments. Alternatively, despite numerical methods not providing exact solutions, they allow to test different experimental scenarios and provide a better insight to what to expect in an actual experiment, while giving access to all the variables of the optical system being simulated. However, the numerical solution of a system of N-coupled Schrodinger fields in systems with two or three spatial dimensions requires massive computation resources, and must employ advanced supercomputing and parallelization techniques, such as GPGPU. This paper focuses on the numerical aspects behind this challenge, describing the structure of our simulation module, its performance and the tests performed.

2019

HILIGHT: A NEW SIMULATION PLATFORM FOR ADVANCED PHOTONICS

Autores
Guerreiro, A; Silva, NA; Costa, J; Gomes, M; Alves, R; Ferreira, TD; Madureira, IS; Pereira, AAM; Almeida, AL;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
We report on the development of HiLight, a new multiphysics simulation platform for advanced photonics with interactive modules dedicated to the study of the propagation of light in multitude of spatially structured optical media, including nonlocal and nonlinear media, optical lattices with atomic gases and plasmas, among others.

2019

A Simple Spectral Interrogation System for Optical Fiber Sensors

Autores
Santos,; Jorge,; Almeida,; Coelho,;

Publicação
Proceedings

Abstract
Optical fiber sensors (OFS) based on long-period fiber gratings (LPFG) or on surface plasmon resonance (SPR) represent attractive solutions for detection systems in remote areas. An interrogation system consisting on wavelength modulation of fiber coupled distributed feedback (DFB) lasers was implemented and tested. The system uses a single photodetector to individually acquire the intensity of each DFB laser modulated by the OFS and the real transmission spectrum is reconstructed through curve fitting. Testing was accomplished by measuring the spectral features of an LPFG when changing the surrounding refractive index and errors lower than 1.8 nm in the 1530 to 1570 nm wavelength region were obtained.

  • 60
  • 243