2023
Autores
Kurunathan, H; Santos, J; Moreira, D; Santos, PM;
Publicação
2023 IEEE 24TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM
Abstract
The domain of Intelligent Transportation Systems (ITS) is becoming a key candidate to enable safer and efficient mobility in IoT enabled smart cities. Several recent research in cooperative autonomous systems are conducted over simulation frameworks as real experiments are still too costly. In this paper, we present a platooning robotic test-bed platform with a 1/10 scale robotic vehicles that functions based on the input front commercially off the shelf technologies (COTS) such as Lidars and cameras. We also present an in-depth analysis of the functionalities and architecture of the proposed system. We also compare the performance of the aforementioned sensors in some real-life emulated scenarios. From our results, we were able to concur that the camera based platooning is able to perform well at partially observable scenarios than its counterpart.
2023
Autores
Cruz, DB; Almeida, JR; Oliveira, JL;
Publicação
IEEE ACCESS
Abstract
As software applications continue to become more complex and attractive to cyber-attackers, enhancing resilience against cyber threats becomes essential. Aiming to provide more robust solutions, different approaches were proposed for vulnerability detection in different stages of the application life-cycle. This article explores three main approaches to application security: Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST), and Software Composition Analysis (SCA). The analysis conducted in this work is focused on open-source solutions while considering commercial solutions to show contrast in the approaches taken and to better illustrate the different options available. It proposes a baseline comparison model to help evaluate and select the best solutions, using comparison criteria that are based on community standards. This work also identifies future opportunities for application security, highlighting some of the key challenges that still need to be addressed in order to fully protect against emerging threats, and proposes a workflow that combines the identified tools to be used for vulnerability assessments.
2023
Autores
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;
Publicação
OCEANS 2023 - LIMERICK
Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.
2023
Autores
Carvalho, PM; Coelho, CC; Jorge, PAS; de Almeida, JMMM;
Publicação
Proceedings - 28th International Conference on Optical Fiber Sensors, OFS 2023
Abstract
Thin films of Ag/Fe were deposited on the core of multimode optical fibers. The deposited film shows sensitivity to both refractive index and MF changes. Simulation work based on TMM formalism confirms experimental response. © Optica Publishing Group 2023, © 2023 The Author(s)
2023
Autores
Ferreira, MFS; Guimaraes, D; Oliveira, R; Lopes, T; Capela, D; Marrafa, J; Meneses, P; Oliveira, A; Baptista, C; Gomes, T; Moutinho, S; Coelho, J; da Silva, RN; Silva, NA; Jorge, PAS;
Publicação
SENSORS
Abstract
Evaluating the efficiency of surface treatments is a problem of paramount importance for the cork stopper industry. Generically, these treatments create coatings that aim to enhance the impermeability and lubrification of cork stoppers. Yet, current methods of surface analysis are typically time-consuming, destructive, have poor representativity or rely on indirect approaches. In this work, the use of a laser-induced breakdown spectroscopy (LIBS) imaging solution is explored for evaluating the presence of coating along the cylindrical surface and in depth. To test it, several cork stoppers with different shaped areas of untreated surface were analyzed by LIBS, making a rectangular grid of spots with multiple shots per spot, to try to identify the correspondent shape. Results show that this technique can detect the untreated area along with other features, such as leakage and holes, allowing for a high success rate of identification and for its performance at different depths, paving the way for future industry-grade quality control solutions with more complex surface analysis.
2023
Autores
Capela D.; Ferreira M.F.S.; Lima A.; Dias F.; Lopes T.; Guimarães D.; Jorge P.A.S.; Silva N.A.;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Fast and precise identification of minerals in geological samples is of paramount importance for the study of rock constituents and for technological applications in the context of mining. However, analyzing samples based only on the extrinsic properties of the minerals such as color can often be insufficient, making additional analysis crucial to improve the accuracy of the methods. In this context, Laser-induced breakdown spectroscopy mapping is an interesting technique to perform the study of the distribution of the chemical elements in sample surfaces, thus allowing deeper insights to help the process of mineral identification. In this work, we present the development and deployment of a processing pipeline and algorithm to identify spatial regions of the same mineralogical composition through chemical information in a fast and automatic way. Furthermore, by providing the necessary labels to the results on a training sample, we can turn this unsupervised methodology into a classifier that can be used to generalize and classify minerals in similar but unseen samples. The results obtained show good accuracy in reproducing the expected mineral regions and extend the interpretability of previous unsupervised methods with a visualization tool for cluster assignment, thus paving for future applications in contexts requiring high-throughput mineral identification systems, such as mining.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.