Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Diogo Miguel Matos

2025

Efficient multi-robot path planning in real environments: a centralized coordination system

Autores
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;

Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS

Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.

2024

AGVs vs AMRs: A Comparative Study of Fleet Performance and Flexibility

Autores
Silva, RT; Brilhante, M; Sobreira, H; Matos, D; Costa, P;

Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) have emerged as key innovations in the industry world, with AMRs offering flexibility a nd adaptability for dynamic environments, while AGVs provide high accuracy for repetitive tasks; thus, this research proposes a study of fleets of both AGVs and AMRs to enhance productivity and efficiency in industrial settings. Several tests were performed where the duration of a mission, the success and collision rate, and the average number of disputes per mission were analyzed in order to obtain results. In conclusion, while AGVs tend to be more reliable and consistent in task completion, AMRs offer greater flexibility a nd speed.

  • 2
  • 2