2021
Autores
Rocha, J; Pereira, S; Campilho, A; Mendonça, AM;
Publicação
IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2021, Athens, Greece, July 27-30, 2021
Abstract
The worldwide pandemic caused by the new coronavirus (COVID-19) has encouraged the development of multiple computer-aided diagnosis systems to automate daily clinical tasks, such as abnormality detection and classification. Among these tasks, the segmentation of COVID lesions is of high interest to the scientific community, enabling further lesion characterization. Automating the segmentation process can be a useful strategy to provide a fast and accurate second opinion to the physicians, and thus increase the reliability of the diagnosis and disease stratification. The current work explores a CNN-based approach to segment multiple COVID lesions. It includes the implementation of a U-Net structure with a ResNet34 encoder able to deal with the highly imbalanced nature of the problem, as well as the great variability of the COVID lesions, namely in terms of size, shape, and quantity. This approach yields a Dice score of 64.1%, when evaluated on the publicly available COVID-19-20 Lung CT Lesion Segmentation GrandChallenge data set. © 2021 IEEE
2021
Autores
Sousa, MQE; Pedrosa, J; Rocha, J; Pereira, SC; Mendonça, AM; Campilho, A;
Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021, Houston, TX, USA, December 9-12, 2021
Abstract
Chest radiography is one of the most ubiquitous imaging modalities, playing an essential role in screening, diagnosis and disease management. However, chest radiography interpretation is a time-consuming and complex task, requiring the availability of experienced radiologists. As such, automated diagnosis systems for pathology detection have been proposed aiming to reduce the burden on radiologists and reduce variability in image interpretation. While promising results have been obtained, particularly since the advent of deep learning, there are significant limitations in the developed solutions, namely the lack of representative data for less frequent pathologies and the learning of biases from the training data, such as patient position, medical devices and other markers as proxies for certain pathologies. The lack of explainability is also a challenge for the adoption of these solutions in clinical practice.Generative adversarial networks could play a significant role as a solution for these challenges as they allow to artificially create new realistic images. This way, new synthetic chest radiography images could be used to increase the prevalence of less represented pathology classes and decrease model biases as well as improving the explainability of automatic decisions by generating samples that serve as examples or counter-examples to the image being analysed, ensuring patient privacy.In this study, a few-shot generative adversarial network is used to generate synthetic chest radiography images. A minimum Fréchet Inception Distance score of 17.83 was obtained, allowing to generate convincing synthetic images. Perceptual validation was then performed by asking multiple readers to classify a mixed set of synthetic and real images. An average accuracy of 83.5% was obtained but a strong dependency on reader experience level was observed. While synthetic images showed structural irregularities, the overall image sharpness was a major factor in the decision of readers. The synthetic images were then validated using a MobileNet abnormality classifier and it was shown that over 99% of images were classified correctly, indicating that the generated images were correctly interpreted by the classifier. Finally, the use of the synthetic images during training of a YOLOv5 pathology detector showed that the addition of the synthetic images led to an improvement of mean average precision of 0.05 across 14 pathologies.In conclusion, the usage of few-shot generative adversarial networks for chest radiography image generation was shown and tested in multiple scenarios, establishing a baseline for future experiments to increase the applicability of generative models in clinical scenarios of automatic CXR screening and diagnosis tools.
2022
Autores
Pereira, SC; Lopes, C; Pedroso, JP;
Publicação
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT
Abstract
The forests and woodlands of Guinea-Bissau are a biodiversity hotspot under threat, which are progressively being replaced by cashew tree orchards. While the exports of cashew nuts significantly contribute to the gross domestic product and support local livelihoods, the country's natural capital is under significant pressure due to unsustainable land use. In this context, official entities strive to counter deforestation, but the problem persists, and there are currently no systematic or automated means for objectively monitoring and reporting the situation. Furthermore, previous remote sensing approaches failed to distinguish cashew orchards from forests and woodlands due to the significant spectral overlap between the land cover types and the highly intertwined structure of the cashew tree patches. This work contributes to overcoming such difficulty. It develops an affordable, reliable, and easy-to-use procedure based on machine learning models and Sentinel-2 images, automatically detecting cashew orchards with a dice coefficient of 82.54%. The results of this case study designed for the Cantanhez National Park are proof of concept and demonstrate the viability of mapping cashew orchards. Therefore, the work is a stepping stone towards wall-to-wall operational monitoring in the region.
2022
Autores
Rocha, J; Pereira, SC; Pedrosa, J; Campilho, A; Mendonca, AM;
Publicação
2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
Backed by more powerful computational resources and optimized training routines, deep learning models have attained unprecedented performance in extracting information from chest X-ray data. Preceding other tasks, an automated abnormality detection stage can be useful to prioritize certain exams and enable a more efficient clinical workflow. However, the presence of image artifacts such as lettering often generates a harmful bias in the classifier, leading to an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise using an attention-driven and spatially unsupervised Spatial Transformer Network (STN). The results indicate that the STN achieves similar results to using YOLO-cropped images, with fewer computational expenses and without the need for localization labels. More specifically, the system is able to distinguish between normal and abnormal CheXpert images with a mean AUC of 84.22%.
2023
Autores
Pereira, SC; Rocha, J; Campilho, A; Sousa, P; Mendonca, AM;
Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Abstract
Background and Objective: Convolutional neural networks are widely used to detect radiological findings in chest radiographs. Standard architectures are optimized for images of relatively small size (for exam-ple, 224 x 224 pixels), which suffices for most application domains. However, in medical imaging, larger inputs are often necessary to analyze disease patterns. A single scan can display multiple types of radi-ological findings varying greatly in size, and most models do not explicitly account for this. For a given network, whose layers have fixed-size receptive fields, smaller input images result in coarser features, which better characterize larger objects in an image. In contrast, larger inputs result in finer grained features, beneficial for the analysis of smaller objects. By compromising to a single resolution, existing frameworks fail to acknowledge that the ideal input size will not necessarily be the same for classifying every pathology of a scan. The goal of our work is to address this shortcoming by proposing a lightweight framework for multi-scale classification of chest radiographs, where finer and coarser features are com-bined in a parameter-efficient fashion. Methods: We experiment on CheXpert, a large chest X-ray database. A lightweight multi-resolution (224 x 224, 4 48 x 4 48 and 896 x 896 pixels) network is developed based on a Densenet-121 model where batch normalization layers are replaced with the proposed size-specific batch normalization. Each input size undergoes batch normalization with dedicated scale and shift parameters, while the remaining parameters are shared across sizes. Additional external validation of the proposed approach is performed on the VinDr-CXR data set. Results: The proposed approach (AUC 83 . 27 +/- 0 . 17 , 7.1M parameters) outperforms standard single-scale models (AUC 81 . 76 +/- 0 . 18 , 82 . 62 +/- 0 . 11 and 82 . 39 +/- 0 . 13 for input sizes 224 x 224, 4 48 x 4 48 and 896 x 896, respectively, 6.9M parameters). It also achieves a performance similar to an ensemble of one individual model per scale (AUC 83 . 27 +/- 0 . 11 , 20.9M parameters), while relying on significantly fewer parameters. The model leverages features of different granularities, resulting in a more accurate classifi-cation of all findings, regardless of their size, highlighting the advantages of this approach. Conclusions: Different chest X-ray findings are better classified at different scales. Our study shows that multi-scale features can be obtained with nearly no additional parameters, boosting performance. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
2017
Autores
Lamurias, A; Sousa, D; Pereira, S; Clarke, LA; Couto, FM;
Publicação
Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, August 3-4, 2017
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.