Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por António José Oliveira

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publicação
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

2024

Underwater Volumetric Mapping using Imaging Sonar and Free-Space Modeling Approach

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024)

Abstract
Lack of information and perceptual ambiguity are key problems in sonar-based mapping applications. We propose a technique for mapping of underwater environments, building on the finite, positive, sonar beamwidth. Our approach models the free-space covered by each emitted acoustic pulse, employing volumetric techniques to create grid-based submaps of the unoccupied water volumes through images collected from imaging sonars. A representation of the occupied space is obtained by exploration of the free-space frontier. Special attention is given to acoustic image preparation and segmentation. Experimental results are provided based on real data collected from a dam shaft scenario.

  • 2
  • 2