2010
Autores
Pinto, AMR; Frazao, O; Santos, JL; Lopez Amo, M; Kobelke, J; Schuster, K;
Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY
Abstract
sThe interrogation of a Fabry-Perot cavity through a dual wavelength Raman fiber laser is reported. The proposed sensing system is based on the use of a dual wavelength Raman fiber laser to generate two quadrature phase-shifted signals that allow the recovery of the temperature change sensed by the Fabry-Perot interferometric cavity. The dual wavelength Raman fiber laser is based on fiber Bragg gratings combined with a distributed mirror. The Fabry-Perot cavity is fabricated by splicing a short length of a suspended-core microstructured fiber to a single mode fiber. The use of this sensing system allows a passive and accurate interrogation of the temperature, while taking advantage of the Rayleigh scattering growth as a distributed mirror in the laser.
2003
Autores
Abad, S; Araujo, FM; Ferreira, LA; Santos, JL; Lopez Amo, M;
Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY
Abstract
A technique for interrogating multiplexed FBG sensors using all-fiber low-cost devices is demonstrated. It is based on spectral filtering employing a fused biconical wavelength-division multiplexer and on amplitude-to-phase optical conversion to perform power referencing. Four FBG sensors are wavelength multiplexed in the network, and a 3-nm-wide tunable optical filter is, employed at the detection block for sensor demultiplexing. With this technique an operation range of more than 2 nm is demonstrated for the sensors with achievable wavelength static resolution ranging from 1.9 to 13.4 pm/Hz(1/2) with no observable hysteresis. As for power referencing, the system is proven to be unaffected by power variations as high as 75% of the total power launched by the source. Finally, output-phase variations due to crosstalk are shown to be under 1% of-the total output phase range, with more than 29-dB optical isolation between channels.
2008
Autores
Magalhaes, F; Carvalho, JP; Ferreira, LA; Araujo, FM; Santos, JL;
Publicação
Proceedings of IEEE Sensors
Abstract
An optoelectronic system for detection and monitoring of methane has been developed and implemented. The signal processing technique used in the proposed system is based on Wavelength Modulation Spectroscopy (WMS). When associated with the revolutionary microstructured fibres, this scheme revealed an effective way to measure gas concentration. Aiming the optimization of the sensing head design, the methane diffusion time inside a hollow-core fibre was evaluated. An error of 2.8% between experimental and theoretical values was obtained, thus validating the adopted model. These results were very encouraging towards the implementation of a practical unit for remote gas monitoring applications. © 2008 IEEE.
2001
Autores
Dahlem, M; Santos, JL; Ferreira, LA; Araujo, FM;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
An investigation on the application of fiber Bragg gratings for the interrogation of interferometric low-finesse Fabry-Perot cavities is reported. The proposed scheme is based on the generation of two quadrature phase-shifted signals that allows the recovering of the change in the cavity length. Besides being totally passive, this technique offers a high degree of flexibility and has the potential to be used in the interrogation of very short cavities.
1999
Autores
Cavaleiro, PM; Araujo, FM; Ferreira, LA; Santos, JL; Farahi, F;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
A new fiber Bragg grating sensor configuration is presented for simultaneous measurement of strain and temperature. The sensor utilizes the effect of boron codoping on the temperature dependence of the refractive index in germanosilicate fibers. By writing gratings with close wavelengths in undoped and boron doped fibers, different temperature sensitivities are obtained while strain sensitivities remain the same. These gratings are then spliced to obtain a simple sensor head suitable for applications in smart structures and composite materials.
1999
Autores
Moreira, PJ; Ferreira, LA; Santos, JL; Farahi, F;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
A signal processing scheme for fiber Bragg grating sensors based on the utilization of adjacent modes of a multimode laser diode light source is demonstrated which allows high sensitivity to be obtained over a large measurement range, For strain measurements, a range of 4800 mu epsilon is achieved with a resolution of 0.08 mu epsilon/root Hz, yielding a dynamic range of 95 dB.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.