Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por José Luís Santos

2011

Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure

Autores
Caldas, P; Jorge, PAS; Rego, G; Frazao, O; Santos, JL; Ferreira, LA; Araujo, F;

Publicação
APPLIED OPTICS

Abstract
In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08m/s is achieved using this new configuration. (C) 2011 Optical Society of America

2007

Simultaneous temperature and strain measurements performed by a step-changed arc-induced long-period fiber grating

Autores
Rego, G; Falate, R; Ivanov, O; Santos, JL;

Publicação
APPLIED OPTICS

Abstract
A compact sensor based on step-changed are-induced long-period fiber gratings was implemented to discriminate between temperature and strain. The proposed sensor consists of a single long-period grating with two sections written consecutively in the SMF-28 fiber using the electric are discharge technique. The two sections have the same period but different fabrication parameters. The operation of the sensor relies on the existence of a difference between the values of temperature and strain sensitivity of two neighboring resonances observed in the spectrum of the step-changed grating. The temperature and strain resolutions obtained for the sensor are 0.2 degrees C and 35 mu epsilon, respectively. (c) 2007 Optical Society of America.

2006

Applications of quantum dots in optical fiber luminescent oxygen sensors

Autores
Jorge, PAS; Mayeh, M; Benrashid, R; Caldas, P; Santos, JL; Farahi, F;

Publicação
APPLIED OPTICS

Abstract
The potential applications of luminescent semiconductor nanocrystals to optical oxygen sensing are explored. The suitability of quantum dots to provide a reference signal in luminescence-based chemical sensors is addressed. A CdSe-ZnS nanocrystal, with an emission peak at 520 nm, is used to provide a reference signal. Measurements of oxygen concentration, which are based on the dynamic quenching of the luminescence of a ruthenium complex, are performed. Both the dye and the nanocrystal are immobilized in a solgel matrix and are excited by a blue LED. Experimental results show that the ratio between the reference and the sensor signals is highly insensitive to fluctuations of the excitation optical power. The use of CdTe, near-infrared quantum dots with an emission wavelength of 680 run, in combination with a ruthenium complex to provide a new mechanism for oxygen sensing, is investigated. The possibility of creating oxygen sensitivity in different spectral regions is demonstrated. The results obtained clearly show that this technique can be applied to develop a wavelength division multiplexed system of oxygen sensors. (c) 2006 Optical Society of America.

2009

Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy

Autores
Carvalho, JP; Lehmann, H; Bartelt, H; Magalhes, F; Amezcua Correa, R; Santos, JL; Roosbroeck, JV; Arajo, FM; Ferreira, LA; Knight, JC;

Publicação
Journal of Sensors

Abstract
In this work we described an optical fibre sensing system for detecting low levels of methane. The properties of hollow-core photonic crystal fibres are explored to have a sensing head with favourable characteristics for gas sensing, particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the sensing structure. The sensor interrogation was performed applying the Wavelength Modulation Spectroscopy technique, and a portable measurement unit was developed with performance suitable for remote detection of low levels of methane. This portable system has the capacity to simultaneously interrogate four remote photonic crystal fibre sensing heads. Copyright © 2009 J. P. Carvalho et al.

2012

Interrogation System Based on "Figure-of-Eight" Fiber Loop Mirror

Autores
Silva, RM; Layeghi, A; Zibaii, MI; Latifi, H; Santos, JL; Lobo Ribeiro, ABL; Frazao, O;

Publicação
22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3

Abstract
A theoretical and experimental study of a new fiber loop mirror based on a "figure-of-eight" configuration, is reported. For the theoretical model, the Jones matrix analysis is analyzed. The configuration is tested as an interrogation system where the spectral response arises from the combination of the reference signal modulated by the sensor signal. The configuration is characterized in mechanical strain and presents a phase sensitivity of 8.2 mrad/mu epsilon.

2012

A novel highly birefringent fiber loop mirror sensor based on a 3x3 coupler

Autores
Silva, RM; Lobo Ribeiro, ABL; Santos, JL; Frazao, O;

Publicação
OPTICAL SENSING AND DETECTION II

Abstract
In this work, a novel high birefringent (HiBi) fiber loop mirror sensor based on a "figure-of-eight" constructed with a 3x3 fiber coupler, is presented. The "figure-of-eight" is formed by two fiber loop mirrors (FLM's) made by four of the six fiber arms of the 3x3 fiber coupler. The other two remaining fiber ports of the 3x3 coupler are used as input and output fibers of the compound sensor. The sensing head is located in the one of the FLM and it is formed by a spliced section of HiBi elliptical core fiber. The spectral response of this "figure-of-eight" configuration presents two interference optical signals that can be easily tuned by a polarization controller that is located in the other FLM, and which is made only of standard singlemode fiber from two arms of the 3x3 coupler. The sensor head was optically characterized both in temperature and strain, showing wavelength dependence sensitivities of -0.23 nm/degrees C and - 2.6 pm/mu epsilon, for temperature and strain, respectively. It is noticed that these sensitivities are practically the same for the two interference signals. Future work will explore the possibility to use the singlemode FLM to interrogate the sensor head made by HiBi fiber section, and providing elimination of phase fluctuations that can occur, increasing its potential for remote sensing applications.

  • 47
  • 76