Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CESE

2025

Digital Justice in the EU: Integration of BPMN and AI into ODR Processes

Autores
Ribeiro, M; Carneiro, D; Mesquita, L;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I

Abstract
With the proliferation of ODR service providers, there is a critical necessity to establish mechanisms supporting their functioning, particularly while designing ODR processes. This article aims to examine the impact of process modelling using BPMN, and of its relevance in the integration of AI into ODR processes within the EU. BPMN allows a meticulous depiction of all the ODR process steps, stakeholders, and underlying data in structured formats that are readable and interpretable by both humans and AI, which enables its integration. The advantages include predictive analysis, identification of opportunities for continuous improvement, operational efficiency, cost and time reduction, and enhanced accessibility for self-represented litigants. Additionally, the transparency afforded by explicitly incorporating AI in BPMN notation fosters a clearer comprehension of processes, facilitating management and informed decision-making. Nevertheless, it remains imperative to address ethical concerns such as algorithmic bias, fairness, and privacy.

2025

Using Explanations to Estimate the Quality of Computer Vision Models

Autores
Oliveira, F; Carneiro, D; Pereira, J;

Publicação
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT

Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.

2025

Development of a Non-Invasive Clinical Machine Learning System for Arterial Pulse Wave Velocity Estimation

Autores
Martinez-Rodrigo, A; Pedrosa, J; Carneiro, D; Cavero-Redondo, I; Saz-Lara, A;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Arterial stiffness (AS) is a well-established predictor of cardiovascular events, including myocardial infarction and stroke. One of the most recognized methods for assessing AS is through arterial pulse wave velocity (aPWV), which provides valuable clinical insights into vascular health. However, its measurement typically requires specialized equipment, making it inaccessible in primary healthcare centers and low-resource settings. In this study, we developed and validated different machine learning models to estimate aPWV using common clinical markers routinely collected in standard medical examinations. Thus, we trained five regression models: Linear Regression, Polynomial Regression (PR), Gradient Boosting Regression, Support Vector Regression, and Neural Networks (NNs) on the EVasCu dataset, a cohort of apparently healthy individuals. A 10-fold cross-validation demonstrated that PR and NN achieved the highest predictive performance, effectively capturing nonlinear relationships in the data. External validation on two independent datasets, VascuNET (a healthy population) and ExIC-FEp (a cohort of cardiopathic patients), confirmed the robustness of PR and NN (R- (2)> 0.90) across different vascular conditions. These results indicate that by using easily accessible clinical variables and AI-driven insights, it is possible to develop a cost-effective tool for aPWV estimation, enabling early cardiovascular risk stratification in underserved and rural areas where specialized AS measurement devices are unavailable.

2025

Reusing ML Models in Dynamic Data Environments: Data Similarity-Based Approach for Efficient MLOps

Autores
Peixoto, E; Torres, D; Carneiro, D; Silva, B; Marques, R;

Publicação
BIG DATA AND COGNITIVE COMPUTING

Abstract
The rapid integration of Machine Learning (ML) in organizational practices has driven demand for substantial computational resources, incurring both high economic costs and environmental impact, particularly from energy consumption. This challenge is amplified in dynamic data environments, where ML models must be frequently retrained to adapt to evolving data patterns. To address this, more sustainable Machine Learning Operations (MLOps) pipelines are needed for reducing environmental impacts while maintaining model accuracy. In this paper, we propose a model reuse approach based on data similarity metrics, which allows organizations to leverage previously trained models where applicable. We introduce a tailored set of meta-features to characterize data windows, enabling efficient similarity assessment between historical and new data. The effectiveness of the proposed method is validated across multiple ML tasks using the cosine and Bray-Curtis distance functions, which evaluate both model reuse rates and the performance of reused models relative to newly trained alternatives. The results indicate that the proposed approach can reduce the frequency of model retraining by up to 70% to 90% while maintaining or even improving predictive performance, contributing to more resource-efficient and sustainable MLOps practices.

2025

A Human-Centric Architecture for Natural Interaction with Organizational Systems

Autores
Guimarães, M; Carneiro, D; Soares, L; Ribeiro, M; Loureiro, G;

Publicação
Advances in Information and Communication - Proceedings of the 2025 Future of Information and Communication Conference (FICC), Volume 1, Berlin, Germany, 27-28 April 2025.

Abstract
The interaction between humans and technology has always been a key determinant factor of adoption and efficiency. This is true whether the interaction is with hardware, software or data. In the particular case of Information Retrieval (IR), recent developments in Deep Learning and Natural Language Processing (NLP) techniques opened the door to more natural and efficient IR means, no longer based on keywords or similarity metrics but on a distributed representation of meaning. In this paper we propose an agent-based architecture to serve as an interface with industrial systems, in which agents are powered by specific Large Language Models (LLMs). Its main goal is to make the interaction with such systems (e.g. data sources, production systems, machines) natural, allowing users to execute complex tasks with simple prompts. To this end, key aspects considered in the architecture are human-centricity and context-awareness. This paper provides a high-level description of this architecture, and then focuses on the development and evaluation of one of its key agents, responsible for information retrieval. For this purpose, we detail three application scenarios, and evaluate the ability of this agent to select the appropriate data sources to answer a specific prompt. Depending on the scenario and on the underlying model, results show an accuracy of up to 80%, showing that the proposed agent can be used to autonomously select from among several available data sources to answer a specific information need. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Contributions for the Development of Personae: Method for Creating Persona Templates (MCPT)

Autores
Couto, F; Malta, MC;

Publicação
HCI INTERNATIONAL 2024-LATE BREAKING PAPERS, PT I

Abstract
This paper contributes to developing a Method for Creating Persona Templates (MCPT), addressing a significant gap in user-centred design methodologies. Utilising qualitative data collection and analysis techniques, MCPT offers a systematic approach to developing robust and context-oriented persona templates. MCPT was created by applying the Design Science Research (DSR) methodology, and it incorporates multiple iterations for template refinement and validation among project stakeholders; all of the proposed steps of this method were based on theoretical contributions. Furthermore, MCPT was tested and refined within a real-life R&D project focusing on developing a digital platform e-marketplace for short agrifood supply chains in two iteration cycles. MCPT fills a critical void in persona research by providing detailed instructions for each step of template development. By involving the target audience, users, and project stakeholders, MCPT adds rigour to the persona creation process, enhancing the quality and relevance of personae casts. This paper contributes to the body of knowledge by offering an initial proposal of a comprehensive method for creating persona templates within diverse projects and contexts. Further research should explore MCPT's adaptability to different settings and projects, thus refining its effectiveness and extending its utility in user-centred design practices.

  • 5
  • 223