2025
Autores
Moço, H; Sousa, C; Ferreira, R; Pinto, P; Pereira, C; Diogo, R;
Publicação
INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS, IN4PL 2024, PT II
Abstract
Since supply chains have become complex and tracking a product's journey, from raw materials to the end of it's life has become more difficult. Consumers are demanding greater transparency about the materials origins and environmental impact of the products they buy. These new requirements, togeher with European Commission Green Deal strategy, lead to the concept of digital product passport (DPP). DPP could be seen as an instrument to boost circularity, however the DPP architecture and governance model still undefined and unclear. Data Governance in the context of the DPP acts as the backbone for ensuring accurate and reliable data within these passports or data models, leading to flawless traceability. This article approaches the DPPs and it's governance challenges, explaining how they function as digital repositories for a product's life cycle information and the concept of Data Governance. By understanding how these two concepts work together, we will explore a short use case within the footwear industry to show how DPP governance architecture might work in a distributed environment.
2025
Autores
Oliveira, F; Carneiro, D; Pereira, J;
Publicação
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT
Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.
2025
Autores
Martinez-Rodrigo, A; Pedrosa, J; Carneiro, D; Cavero-Redondo, I; Saz-Lara, A;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Arterial stiffness (AS) is a well-established predictor of cardiovascular events, including myocardial infarction and stroke. One of the most recognized methods for assessing AS is through arterial pulse wave velocity (aPWV), which provides valuable clinical insights into vascular health. However, its measurement typically requires specialized equipment, making it inaccessible in primary healthcare centers and low-resource settings. In this study, we developed and validated different machine learning models to estimate aPWV using common clinical markers routinely collected in standard medical examinations. Thus, we trained five regression models: Linear Regression, Polynomial Regression (PR), Gradient Boosting Regression, Support Vector Regression, and Neural Networks (NNs) on the EVasCu dataset, a cohort of apparently healthy individuals. A 10-fold cross-validation demonstrated that PR and NN achieved the highest predictive performance, effectively capturing nonlinear relationships in the data. External validation on two independent datasets, VascuNET (a healthy population) and ExIC-FEp (a cohort of cardiopathic patients), confirmed the robustness of PR and NN (R- (2)> 0.90) across different vascular conditions. These results indicate that by using easily accessible clinical variables and AI-driven insights, it is possible to develop a cost-effective tool for aPWV estimation, enabling early cardiovascular risk stratification in underserved and rural areas where specialized AS measurement devices are unavailable.
2025
Autores
Guimarães, M; Carneiro, D; Soares, L; Ribeiro, M; Loureiro, G;
Publicação
Advances in Information and Communication - Proceedings of the 2025 Future of Information and Communication Conference (FICC), Volume 1, Berlin, Germany, 27-28 April 2025.
Abstract
The interaction between humans and technology has always been a key determinant factor of adoption and efficiency. This is true whether the interaction is with hardware, software or data. In the particular case of Information Retrieval (IR), recent developments in Deep Learning and Natural Language Processing (NLP) techniques opened the door to more natural and efficient IR means, no longer based on keywords or similarity metrics but on a distributed representation of meaning. In this paper we propose an agent-based architecture to serve as an interface with industrial systems, in which agents are powered by specific Large Language Models (LLMs). Its main goal is to make the interaction with such systems (e.g. data sources, production systems, machines) natural, allowing users to execute complex tasks with simple prompts. To this end, key aspects considered in the architecture are human-centricity and context-awareness. This paper provides a high-level description of this architecture, and then focuses on the development and evaluation of one of its key agents, responsible for information retrieval. For this purpose, we detail three application scenarios, and evaluate the ability of this agent to select the appropriate data sources to answer a specific prompt. Depending on the scenario and on the underlying model, results show an accuracy of up to 80%, showing that the proposed agent can be used to autonomously select from among several available data sources to answer a specific information need. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Couto, F; Curado Malta, M;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
This paper contributes to developing a Method for Creating Persona Templates (MCPT), addressing a significant gap in user-centred design methodologies. Utilising qualitative data collection and analysis techniques, MCPT offers a systematic approach to developing robust and context-oriented persona templates. MCPT was created by applying the Design Science Research (DSR) methodology, and it incorporates multiple iterations for template refinement and validation among project stakeholders; all of the proposed steps of this method were based on theoretical contributions. Furthermore, MCPT was tested and refined within a real-life R&D project focusing on developing a digital platform e-marketplace for short agrifood supply chains in two iteration cycles. MCPT fills a critical void in persona research by providing detailed instructions for each step of template development. By involving the target audience, users, and project stakeholders, MCPT adds rigour to the persona creation process, enhancing the quality and relevance of personae casts. This paper contributes to the body of knowledge by offering an initial proposal of a comprehensive method for creating persona templates within diverse projects and contexts. Further research should explore MCPT’s adaptability to different settings and projects, thus refining its effectiveness and extending its utility in user-centred design practices. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Autores
Öztürk, EG; Rocha, P; Rodrigues, AM; Ferreira, JS; Lopes, C; Oliveira, C; Nunes, AC;
Publicação
DECISION SUPPORT SYSTEMS
Abstract
Sectorization problems refer to dividing a large set, area or network into smaller parts concerning one or more objectives. A decision support system (DSS) is a relevant tool for solving these problems, improving optimisation procedures, and finding feasible solutions more efficiently. This paper presents a new web-based Decision Support System for Sectorization (D3S). D3S is designed to solve sectorization problems in various areas, such as school and health districting,planning sales territories and maintenance operations zones, or political districting. Due to its generic design, D3S bridges the gap between sectorization problems and a state-of-the-art decision support tool. The paper aims to present the generic and technical attributes of D3S by providing detailed information regarding the problem-solution approach (based on Evolutionary Algorithms), objectives (most common in sectorization), constraints, structure and performance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.