Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Filipe Gonçalves

2025

An Integrated and User-Friendly Platform for the Deployment of Explainable Artificial Intelligence Methods Applied to Face Recognition

Autores
Albuquerque, C; Neto, PC; Gonçalves, T; Sequeira, AF;

Publicação
HCI for Cybersecurity, Privacy and Trust - 7th International Conference, HCI-CPT 2025, Held as Part of the 27th HCI International Conference, HCII 2025, Gothenburg, Sweden, June 22-27, 2025, Proceedings, Part II

Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users’ trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model’s decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Enhancing Medical Image Analysis: A Pipeline Combining Synthetic Image Generation and Super-Resolution

Autores
Sousa, P; Campas, D; Andrade, J; Pereira, P; Gonçalves, T; Teixeira, LF; Pereira, T; Oliveira, HP;

Publicação
Pattern Recognition and Image Analysis - 12th Iberian Conference, IbPRIA 2025, Coimbra, Portugal, June 30 - July 3, 2025, Proceedings, Part II

Abstract
Cancer is a leading cause of mortality worldwide, with breast and lung cancer being the most prevalent globally. Early and accurate diagnosis is crucial for successful treatment, and medical imaging techniques play a pivotal role in achieving this. This paper proposes a novel pipeline that leverages generative artificial intelligence to enhance medical images by combining synthetic image generation and super-resolution techniques. The framework is validated in two medical use cases (breast and lung cancers), demonstrating its potential to improve the quality and quantity of medical imaging data, ultimately contributing to more precise and effective cancer diagnosis and treatment. Overall, although some limitations do exist, this paper achieved satisfactory results for an image size which is conductive to specialist analysis, and further expands upon this field’s capabilities. © 2025 Elsevier B.V., All rights reserved.

2025

Deciphering the Silent Signals: Unveiling Frequency Importance for Wi-Fi-Based Human Pose Estimation with Explainability

Autores
Capozzi, L; Ferreira, L; Gonçalves, T; Rebelo, A; Cardoso, JS; Sequeira, AF;

Publicação
Pattern Recognition and Image Analysis - 12th Iberian Conference, IbPRIA 2025, Coimbra, Portugal, June 30 - July 3, 2025, Proceedings, Part II

Abstract
The rapid advancement of wireless technologies, particularly Wi-Fi, has spurred significant research into indoor human activity detection across various domains (e.g., healthcare, security, and industry). This work explores the non-invasive and cost-effective Wi-Fi paradigm and the application of deep learning for human activity recognition using Wi-Fi signals. Focusing on the challenges in machine interpretability, motivated by the increase in data availability and computational power, this paper uses explainable artificial intelligence to understand the inner workings of transformer-based deep neural networks designed to estimate human pose (i.e., human skeleton key points) from Wi-Fi channel state information. Using different strategies to assess the most relevant sub-carriers (i.e., rollout attention and masking attention) for the model predictions, we evaluate the performance of the model when it uses a given number of sub-carriers as input, selected randomly or by ascending (high-attention) or descending (low-attention) order. We concluded that the models trained with fewer (but relevant) sub-carriers are competitive with the baseline (trained with all sub-carriers) but better in terms of computational efficiency (i.e., processing more data per second). © 2025 Elsevier B.V., All rights reserved.

  • 7
  • 7