Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por António Sérgio Faria

2023

Market integration analysis of heat recovery under the EMB3Rs platform: An industrial park case in Greece

Autores
Faria, AS; Soares, T; Goumas, G; Abotzios, A; Cunha, JM; Silva, M;

Publicação
2023 OPEN SOURCE MODELLING AND SIMULATION OF ENERGY SYSTEMS, OSMSES

Abstract
This work aims to present a thorough study of a district heating scenario in a Greek industrial park case. The work is supported by the EMB3Rs open-source platform, allowing to perform a feasibility analysis of the system. In particular, this work explores the market module of this platform to provide a detailed market analysis of energy exchange within the Greek industrial park. The results pinpoint the effectiveness of the platform in simulating different market designs like centralized and decentralized, making clear the potential benefit the sources in the test case may achieve by engaging in a market framework. Different options for market clearing are considered in the study, for instance, including CO2 signals to reach carbon neutrality or community preferences to increase community autonomy. One can conclude that excess heat from existing sources is enough to cover other industries/facilities' heat demand, leading to environmental benefits as well as a fairer financial profits allocation.

2023

P2P market coordination methodologies with distribution grid management

Autores
Faria, AS; Soares, T; Orlandini, T; Oliveira, C; Sousa, T; Pinson, P; Matos, M;

Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
As prosumers and energy communities gain prominence in power systems, energy trading between prosumers in local P2P markets is paramount. Within this novel market design, peers can directly exchange energy with each other, leading to economic advantages while supporting the decarboniza-tion of the sector. To ensure that voltage and congestion issues are properly addressed, a thorough coordination between the P2P market and the Distribution System Operator is required. This paper presents and compares three mutual-benefit coordination methods. The first method entails applying product differentiation on an iterative basis to avoid exceeding the lines thermal limits, which is performed through penalties on P2P exchanges that may be overloading the network. The second method uses the P2P market with an AC-OPF, ensuring network operation through a flexibility market via upward and downward flexibility. The last one proposes an integrated operation of the P2P market with AC-OPF. All methods are assessed in a typical distribution network with high prosumers integration. The results show that the second method is the one that, fulfilling the network constraints, presents greater social welfare.& COPY; 2023 Elsevier Ltd. All rights reserved.

  • 2
  • 2