Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2025

Metabolic mapping for precision grape maturation: Application of a tomography-like method for site-specific management

Autores
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;

Publicação
SMART AGRICULTURAL TECHNOLOGY

Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.

2025

Digital assessment of plant diseases: A critical review and analysis of optical sensing technologies for early plant disease diagnosis

Autores
Pereira, MR; Tosin, R; dos Santos, FN; Tavares, F; Cunha, M;

Publicação
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
The present critical literature review describes the state-of-the-art innovative proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting more precise and efficient phytosanitary measures. Research and development of new sensors for this purpose are currently a challenge. Present procedures and diagnosis techniques depend on visual characteristics and symptoms to be initiated and applied, compromising an early intervention. Also, these methods were designed to confirm the presence of pathogens, which did not have the required high throughput and speed to support real-time agronomic decisions in field extensions. Proximal sensor-based systems are a reasonable tool for an efficient and economic disease assessment. This work focused on identifying the application of optical and spectroscopic sensors as a tool for disease diagnosis. Biophoton emission, fluorescence spectroscopy, laser-induced breakdown spectroscopy, multi- and hyperspectral spectroscopy (HS), nuclear magnetic resonance spectroscopy, Raman spectroscopy, RGB imaging, thermography, volatile organic compounds assessment, and X-ray fluorescence were described due to their relevant potential. Nevertheless, some techniques revealed a low technology readiness level (TRL). The main conclusions identify HS, single and multi-spatial point observation, as the most applied methods for early plant disease diagnosis studies (88%), combined with distinct feature selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation indices (28%) and principal component analysis (19%) were the most popular FeS and DR approaches, highlighting the most relevant wavelengths contributing to disease diagnosis. In modeling, classification was the most applied technique (80%), used mainly for binary and multi-class health status identification. Regression was used in the remaining (21%) scientific works screened. The data was collected primarily in laboratory conditions (62%), and a few works were performed in field conditions (21%). Regarding the study's etiological agent responsible for causing the disease, fungi (53%) and viruses (23%) were the most analyzed group of pathogens found in the literature. Overall, proximal sensors are suitable for early plant disease diagnosis before and after symptom appearance, presenting classification accuracies mostly superior to 71% and regression coefficients superior to 61%. Nevertheless, additional research regarding the study of specific host-pathogen interactions is necessary.

2025

Benchmarking Controllers for Low-Cost Agricultural SCARA Manipulators

Autores
Tinoco, V; Silva, MF; dos Santos, FN; Morais, R;

Publicação
SENSORS

Abstract
Agriculture needs to produce more with fewer resources to satisfy the world's demands. Labor shortages, especially during harvest seasons, emphasize the need for agricultural automation. However, the high cost of commercially available robotic manipulators, ranging from EUR 3000 to EUR 500,000, is a significant barrier. This research addresses the challenges posed by low-cost manipulators, such as inaccuracy, limited sensor feedback, and dynamic uncertainties. Three control strategies for a low-cost agricultural SCARA manipulator were developed and benchmarked: a Sliding Mode Controller (SMC), a Reinforcement Learning (RL) Controller, and a novel Proportional-Integral (PI) controller with a self-tuning feedforward element (PIFF). The results show the best response time was obtained using the SMC, but with joint movement jitter. The RL controller showed sudden breaks and overshot upon reaching the setpoint. Finally, the PIFF controller showed the smoothest reference tracking but was more susceptible to changes in system dynamics.

2025

Review on Upper-Limb Exoskeletons

Autores
Pires, A; dos Santos, FN; Tinoco, V;

Publicação
MACHINES

Abstract
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the use of tools or heavy equipment. Such activities increase the probability of developing muscle fatigue or injuries due to overuse or improper posture. Over time, this can result in the development of chronic conditions, which may impair the individual's ability to perform tasks effectively and potentially lead to long-term physical impairment. Exoskeletons play a transformative role by reducing the perceived load on the muscles and providing mechanical support, mitigating the risk of injuries and alleviating the physical burden associated with strenuous activities. In addition to injury prevention, these devices also promise to facilitate the rehabilitation of individuals who have sustained musculoskeletal injuries. This document examines the various types of exoskeletons, investigating their design, functionality, and applications. The objective of this study is to present a comprehensive understanding of the current state of these devices, highlighting advancements in the field and evaluating their real-world impact. Furthermore, it analyzes the crucial insights obtained by other researchers, and by summarizing these findings, this work aims to contribute to the ongoing efforts to enhance exoskeleton performance and expand their accessibility across different sectors, including agriculture, healthcare, industrial work, and beyond.

2025

Algae and Fish Farming - An EPS@ISEP 2022 Project

Autores
Blomme, RF; Domissy, Z; Dylik, Z; Hidding, T; Röhe, A; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publicação
FUTUREPROOFING ENGINEERING EDUCATION FOR GLOBAL RESPONSIBILITY, ICL2024, VOL 3

Abstract
The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) is a capstone engineering design program where students, organised in multidisciplinary and multicultural teams, create a solution for a proposed problem, bearing in mind ethical, sustainability and market concerns. The project proposals are usually aligned with the United Nations Sustainable Development Goals (SDG). New sustainable food production methods are essential to cope with the continuous population growth and aligned with SDG2 and SDG12. In this context, this paper describes the research and work done by a team of Erasmus students enrolled in EPS@ISEP during the spring of 2022. Since sustainable algae farming can be a suitable source of food, the team's goal was the design and develop a proof-of-concept prototype, named GREEN center dot flow, of a symbiotic aquaponic system to farm algae and fish. The smart GREEN center dot flow concept comprises a modular structure and an app for control and supervision. The proposed design was driven by state-of-the-art research, targeted to a specific market niche based on a market analysis, and considering sustainability and ethics concerns, all of which are described in this manuscript. A proof-of-concept prototype was built and tested to verify that it worked as intended.

2025

Post-stroke upper limb rehabilitation: clinical practices, compensatory movements, assessment, and trends

Autores
Rocha, CD; Carneiro, I; Torres, M; Oliveira, HP; Pires, EJS; Silva, MF;

Publicação
PROGRESS IN BIOMEDICAL ENGINEERING

Abstract
Stroke, a vascular disorder affecting the nervous system, is the third-leading cause of death and disability combined worldwide. One in every four people aged 25 and older will face the consequences of this condition, which typically causes loss of limb function, among other disabilities. The proposed review analyzes the mechanisms of stroke and their influence on the disease outcome, highlighting the critical role of rehabilitation in promoting recovery of the upper limb (UL) and enhancing the quality of life of stroke survivors. Common outcome measures and the specific targeted UL features are described, along with emerging supplementary therapies found in the literature. Stroke survivors often develop compensatory strategies to cope with limitations in UL function, which must be detected and corrected during rehabilitation to facilitate long-term recovery. Recent research on the automated detection of compensatory movements has explored pressure, wearable, marker-based motion capture systems, and vision sensors. Although current approaches have certain limitations, they establish a strong foundation for future innovations in post-stroke UL rehabilitation, promoting a more effective recovery.

  • 9
  • 377