Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2025

Grapevine inflorescence segmentation and flower estimation based on Computer Vision techniques for early yield assessment

Autores
Moreira, G; dos Santos, FN; Cunha, M;

Publicação
SMART AGRICULTURAL TECHNOLOGY

Abstract
Yield forecasting is of immeasurable value in modern viticulture to optimize harvest scheduling and quality management. The number of inflorescences and flowers per vine is one of the main components and their assessment serves as an early predictor, which can explain up to 85-90% of yield variability. This study introduces a sophisticated framework that integrates the benchmark of different advanced deep learning and classic image processing to automate the segmentation of grapevine inflorescences and the detection of single flowers, to achieve precise, early, and non-invasive yield predictions in viticulture. The YOLOv8n model achieved superior performance in localizing inflorescences ( F1-Score (Box) = 95.9%) and detecting individual flowers (F1-Score = 91.4%), while the YOLOv5n model excelled in the segmentation task ( F1-Score (Mask) = 98.6%). The models demonstrated a strong correlation (R-2 > 90.0%) between detected and visible flowers in inflorescences. A statistical analysis confirmed the robustness of the framework, with the YOLOv8 model once again standing out, showing no significant differences in error rates across diverse grapevine morphologies and varieties, ensuring wide applicability. The results demonstrate that these models can significantly improve the accuracy of early yield predictions, offering a noninvasive, scalable solution for Precision Viticulture. The findings underscore the potential for Computer Vision technology to enhance vineyard management practices, leading to better resource allocation and improved crop quality.

2025

A review of advanced controller methodologies for robotic manipulators

Autores
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhaes, SA; Oliveira, PM;

Publicação
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL

Abstract
With the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.

2025

Algae and Fish Farming - An EPS@ISEP 2022 Project

Autores
Blomme, RF; Domissy, Z; Dylik, Z; Hidding, T; Röhe, A; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publicação
FUTUREPROOFING ENGINEERING EDUCATION FOR GLOBAL RESPONSIBILITY, ICL2024, VOL 3

Abstract
The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) is a capstone engineering design program where students, organised in multidisciplinary and multicultural teams, create a solution for a proposed problem, bearing in mind ethical, sustainability and market concerns. The project proposals are usually aligned with the United Nations Sustainable Development Goals (SDG). New sustainable food production methods are essential to cope with the continuous population growth and aligned with SDG2 and SDG12. In this context, this paper describes the research and work done by a team of Erasmus students enrolled in EPS@ISEP during the spring of 2022. Since sustainable algae farming can be a suitable source of food, the team's goal was the design and develop a proof-of-concept prototype, named GREEN center dot flow, of a symbiotic aquaponic system to farm algae and fish. The smart GREEN center dot flow concept comprises a modular structure and an app for control and supervision. The proposed design was driven by state-of-the-art research, targeted to a specific market niche based on a market analysis, and considering sustainability and ethics concerns, all of which are described in this manuscript. A proof-of-concept prototype was built and tested to verify that it worked as intended.

2025

A New Closed-Loop Control Paradigm Based on Process Moments

Autores
Vrancic, D; Bisták, P; Huba, M; Oliveira, PM;

Publicação
MATHEMATICS

Abstract
The paper presents a new control concept based on the process moment instead of the process states or the process output signal. The control scheme is based on separate control of reference tracking and disturbance rejection. The tracking control is achieved by additionally feeding the input of the process model by the scaled output signal of the process model. The advantage of such feedback is that the final state of the process output can be analytically calculated and used for control instead of the actual process output value. The disturbance rejection, including model imperfections, is controlled by feeding back the filtered difference between the process output and the model output to the process input. The performance of tracking and disturbance rejection is simply controlled by two user-defined gains. Several examples have shown that the new control method provides very good and stable tracking and disturbance rejection performance.

2025

Implementation of an Internet of Things Architecture to Monitor Indoor Air Quality: A Case Study During Sleep Periods

Autores
Mota, A; Serôdio, C; Briga-Sá, A; Valente, A;

Publicação
SENSORS

Abstract
Most human time is spent indoors, and due to the pandemic, monitoring indoor air quality (IAQ) has become more crucial. In this study, an IoT (Internet of Things) architecture is implemented to monitor IAQ parameters, including CO2 and particulate matter (PM). An ESP32-C6-based device is developed to measure sensor data and send them, using the MQTT protocol, to a remote InfluxDBv2 database instance, where the data are stored and visualized. The Python 3.11 scripting programming language is used to automate Flux queries to the database, allowing a more in-depth data interpretation. The implemented system allows to analyze two measured scenarios during sleep: one with the door slightly open and one with the door closed. Results indicate that sleeping with the door slightly open causes CO2 levels to ascend slowly and maintain lower concentrations compared to sleeping with the door closed, where CO2 levels ascend faster and the maximum recommended values are exceeded. This demonstrates the benefits of ventilation in maintaining IAQ. The developed system can be used for sensing in different environments, such as schools or offices, so an IAQ assessment can be made. Based on the generated data, predictive models can be designed to support decisions on intelligent natural ventilation systems, achieving an optimized, efficient, and ubiquitous solution to moderate the IAQ.

2025

High-resolution portable bluetooth module for ECG and EMG acquisition

Autores
Luiz, LE; Soares, S; Valente, A; Barroso, J; Leitao, P; Teixeira, JP;

Publicação
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL

Abstract
Problem: Portable ECG/sEMG acquisition systems for telemedicine often lack application flexibility (e.g., limited configurability, signal validation) and efficient wireless data handling. Methodology: A modular biosignal acquisition system with up to 8 channels, 24-bit resolution and configurable sampling (1-4 kHz) is proposed, featuring per-channel gain/source adjustments, internal MUX-based reference drive, and visual electrode integrity monitoring; Bluetooth (R) transmits data via a bit-wise packet structure (83.92% smaller than JSON, 7.28 times faster decoding with linear complexity based on input size). Results: maximum 6.7 mu V-rms input-referred noise; harmonic signal correlations >99.99%, worst-case THD of -53.03 dBc, and pulse wave correlation >99.68% in frequency-domain with maximum NMSE% of 6e-6%; and 22.3-hour operation (3.3 Ah battery @ 150 mA). Conclusion: The system enables high-fidelity, power-efficient acquisition with validated signal integrity and adaptable multi-channel acquisition, addressing gaps in portable biosensing.

  • 6
  • 371