Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

Segmentation as a Pre-processing for Automatic Grape Moths Detection

Autores
Teixeira, AC; Carneiro, GA; Morais, R; Sousa, JJ; Cunha, A;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape moths are a significant pest in vineyards, causing damage and losses in wine production. Pheromone traps are used to monitor grape moth populations and determine their developmental status to make informed decisions regarding pest control. Smart pest monitoring systems that employ sensors, cameras, and artificial intelligence algorithms are becoming increasingly popular due to their ability to streamline the monitoring process. In this study, we investigate the effectiveness of using segmentation as a pre-processing step to improve the detection of grape moths in trap images using deep learning models. We train two segmentation models, the U-Net architecture with ResNet18 and InceptionV3 backbonesl, and utilize the segmented and non-segmented images in the YOLOv5s and YOLOv8s detectors to evaluate the impact of segmentation on detection. Our results show that segmentation preprocessing can significantly improve detection by 3% for YOLOv5 and 1.2% for YOLOv8. These findings highlight the potential of segmentation pre-processing for enhancing insect detection in smart pest monitoring systems, paving the way for further exploration of different training methods.

2023

Can the Segmentation Improve the Grape Varieties' Identification Through Images Acquired On-Field?

Autores
Carneiro, GA; Texeira, A; Morais, R; Sousa, JJ; Cunha, A;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape varieties play an important role in wine's production chain, its identification is crucial for controlling and regulating the production. Nowadays, two techniques are widely used, ampelography and molecular analysis. However, there are problems with both of them. In this scenario, Deep Learning classifiers emerged as a tool to automatically classify grape varieties. A problem with the classification of on-field acquired images is that there is a lot of information unrelated to the target classification. In this study, the use of segmentation before classification to remove such unrelated information was analyzed. We used two grape varieties identification datasets to fine-tune a pre-trained EfficientNetV2S. Our results showed that segmentation can slightly improve classification performance if only unrelated information is removed.

2023

Study of Recent Deformations in the Bogota Savanna and the City of Bogota (Colombia) Using Multi-Temporal Satellite Radar Interferometry

Autores
Duque, JST; Ruiz-Armenteros, AM; Alvarez, GEA; Matiz, G; Sousa, JJ;

Publicação
REMOTE SENSING

Abstract
Bogota, the largest urban center and capital city of Colombia, is located within the Bogota savanna, which originated as a lake in the central part of the Colombian Eastern Cordillera. Over time, the lake transformed into a gently undulating plain with horizontally deposited sediments that formed around five million years ago. Over the last few decades, the region has undergone significant population growth and rapid urban development, largely driven by migration from rural areas. This development has substantially impacted the subsidence observed in the city, primarily due to the extraction of groundwater. A previous study by the Servicio Geologico Colombiano (SGC) utilized data from GNSS stations and synthetic aperture radar interferometry (InSAR) with TerraSAR-X SAR between 2011 and 2017 to identify a subsidence pattern in the central region of Bogota. The purpose of the study was to evaluate the risks and potential disasters associated with the subsidence phenomenon. Our study investigates both the subsidence in Bogota, previously studied, as well as the rural savanna area, which is currently undergoing significant residential and industrial development. We utilized multi-temporal InSAR (MT-InSAR) techniques with Sentinel-1 SAR images from 2014 to 2021. The analysis results indicate that the outer regions of the city display the most significant subsidence, extending from the center to the north. The subsidence velocities in these areas reach approximately 5-6 cm/year.

2023

Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes

Autores
Marques, P; Padua, L; Sousa, JJ; Fernandes Silva, A;

Publicação
REMOTE SENSING

Abstract
Global warming presents a significant threat to the sustainability of agricultural systems, demanding increased irrigation to mitigate the impacts of prolonged dry seasons. Efficient water management strategies, including deficit irrigation, have thus become essential, requiring continuous crop monitoring. However, conventional monitoring methods are laborious and time-consuming. This study investigates the potential of aerial imagery captured by unmanned aerial vehicles (UAVs) to predict critical water stress indicators-relative water content (RWC), midday leaf water potential (psi MD), stomatal conductance (gs)-as well as the pigment content (chlorophyll ab, chlorophyll a, chlorophyll b and carotenoids) of trees in an olive orchard. Both thermal and spectral vegetation indices are calculated and correlated using linear and exponential regression models. The results reveal that the thermal vegetation indices contrast in estimating the water stress indicators, with the Crop Water Stress Index (CWSI) demonstrating higher precision in predicting the RWC (R2 = 0.80), psi MD (R2 = 0.61) and gs (R2 = 0.72). Additionally, the Triangular Vegetation Index (TVI) shows superior accuracy in predicting the chlorophyll ab (R2 = 0.64) and chlorophyll a (R2 = 0.61), while the Modified Chlorophyll Absorption in Reflectance Index (MCARI) proves most effective for estimating the chlorophyll b (R2 = 0.52). This study emphasizes the potential of UAV-based multispectral and thermal infrared imagery in precision agriculture, enabling assessments of the water status and pigment content. Moreover, these results highlight the vital importance of this technology in optimising resource allocation and enhancing olive production, critical steps towards sustainable agriculture in the face of global warming.

2023

The impact of ground control points for the 3D study of grapevines in steep slope vineyards

Autores
Stolarski, O; Lourenço, JM; Peres, E; Morais, R; Sousa, JJ; Pádua, L;

Publicação
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.

Abstract
Data acquisition through unmanned aerial vehicles (UAVs) has become integral to the study of agricultural crops, especially for multitemporal analyses spanning the entire growing season. Ensuring accurate data alignment is essential not only to maintain data quality but also to leverage the continuous monitoring of the same area over time. Ground control points (GCPs) play a critical role in geolocating UAV data. Their absence can lead to planimetric and altimetric discrepancies, which are particularly impactful in 3D plant-level studies. This study is centered on the examination of misalignment effects in a challenging steep slope vineyard environment and their impacts on 3D alignment accuracy. For this purpose, a UAV equipped with an RGB camera to capture imagery at two distinct flight heights. Various scenarios, each involving a different number of GCPs, were assessed to evaluate their impact on alignment precision. The methodology employed holds potential for assessing geolocation accuracy in complex 3D environments, providing value insights for vineyard monitoring. © 2024 The Author(s). Published by Elsevier B.V.

2023

IDENTIFICATION OF APHIDS USING MACHINE LEARNING CLASSIFIERS ON UAV-BASED MULTISPECTRAL DATA

Autores
Guimaraes, N; Pádua, L; Sousa, JJ; Bento, A; Couto, P;

Publicação
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM

Abstract
Almond trees in Portugal are susceptible to aphid infestation, which can result in reduced fruit production. To effectively tackle this issue, the combination of remote sensing (RS) data and machine learning (ML) classifiers can be used to accurately detect the presence of aphids. This study focuses in the implementation of ML classifiers and RS data analysis to identify aphids on almond trees, using high-resolution multispectral data collected through an unmanned aerial vehicle (UAV) in a Portuguese almond orchard. Four ML classifiers, kNN, SVM, RF and XGBoost, were employed and fine-tuned using vegetation indices derived from spectral data. The results revealed that the SVM classifier achieved an overall accuracy (OA) of 77%, followed by kNN with an OA of 74%, while XGBoost and RF achieved OAs of 71% and 69%, respectively. Consequently, this study demonstrates the viability of employing RS data and ML classifiers for aphid identification in almond orchards.

  • 59
  • 363