Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses

Autores
Baptista, J; Jesus, B; Cerveira, A; Pires, EJS;

Publicação
SUSTAINABILITY

Abstract
The last two decades have witnessed a new paradigm in terms of electrical energy production. The production of electricity from renewable sources has come to play a leading role, thus allowing us not only to face the global increase in energy consumption, but also to achieve the objectives of decarbonising the economies of several countries. In this scenario, where onshore wind energy is practically exhausted, several countries are betting on constructing offshore wind farms. Since all the costs involved are higher when compared to onshore, optimising the efficiency of this type of infrastructure as much as possible is essential. The main aim of this paper was to develop an optimisation model to find the best wind turbine locations for offshore wind farms and to obtain the wind farm layout to maximise the profit, avoiding cable crossings, taking into account the wake effect and power losses. The ideal positioning of wind turbines is important for maximising the production of electrical energy. Furthermore, a techno-economic analysis was performed to calculate the main economic indicators, namely the net present value, the internal rate of return, and the payback period, to support the decision-making. The results showed that the developed model found the best solution that maximised the profits of the wind farm during its lifetime. It also showed that the location of the offshore substation played a key role in achieving these goals.

2023

Anomaly Detection in Microservice-Based Systems

Autores
Nobre, J; Pires, EJS; Reis, A;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Currently, distributed software systems have evolved at an unprecedented pace. Modern software-quality requirements are high and require significant staff support and effort. This study investigates the use of a supervised machine learning model, a Multi-Layer Perceptron (MLP), for anomaly detection in microservices. The study covers the creation of a microservices infrastructure, the development of a fault injection module that simulates application-level and service-level anomalies, the creation of a system monitoring dataset, and the creation and validation of the MLP model to detect anomalies. The results indicate that the MLP model effectively detects anomalies in both domains with higher accuracy, precision, recovery, and F1 score on the service-level anomaly dataset. The potential for more effective distributed system monitoring and management automation is highlighted in this study by focusing on service-level metrics such as service response times. This study provides valuable information about the effectiveness of supervised machine learning models in detecting anomalies across distributed software systems.

2023

Wind Farm Cable Connection Layout Optimization Using a Genetic Algorithm and Integer Linear Programming

Autores
Pires, EJS; Cerveira, A; Baptista, J;

Publicação
COMPUTATION

Abstract
This work addresses the wind farm (WF) optimization layout considering several substations. It is given a set of wind turbines jointly with a set of substations, and the goal is to obtain the optimal design to minimize the infrastructure cost and the cost of electrical energy losses during the wind farm lifetime. The turbine set is partitioned into subsets to assign to each substation. The cable type and the connections to collect wind turbine-produced energy, forwarding to the corresponding substation, are selected in each subset. The technique proposed uses a genetic algorithm (GA) and an integer linear programming (ILP) model simultaneously. The GA creates a partition in the turbine set and assigns each of the obtained subsets to a substation to optimize a fitness function that corresponds to the minimum total cost of the WF layout. The fitness function evaluation requires solving an ILP model for each substation to determine the optimal cable connection layout. This methodology is applied to four onshore WFs. The obtained results show that the solution performance of the proposed approach reaches up to 0.17% of economic savings when compared to the clustering with ILP approach (an exact approach).

2023

Myocardial Infarction Prediction Using Deep Learning

Autores
Cruz, C; Leite, A; Pires, EJS; Pereira, LT;

Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Myocardial infarction, known as heart attack, is one of the leading causes of world death. It occurs when blood heart flow is interrupted by part of coronary artery occlusion, causing the ischemic episode to last longer, creating a change in the patient’s ECG. In this work, a method was developed for predicting patients with MI through Frank 3-lead ECG extracted from Physionet’s PTB ECG Diagnostic Database and using instantaneous frequency and spectral entropy to extract features. Two neural networks were applied: Long Short-Term Memory and Bi-Long Short-Term Memory, obtaining a better result with the first one, with an accuracy of 78%. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2023

Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review

Autores
Teixeira, I; Morais, R; Sousa, JJ; Cunha, A;

Publicação
AGRICULTURE-BASEL

Abstract
In recent years, the use of remote sensing data obtained from satellite or unmanned aerial vehicle (UAV) imagery has grown in popularity for crop classification tasks such as yield prediction, soil classification or crop mapping. The ready availability of information, with improved temporal, radiometric, and spatial resolution, has resulted in the accumulation of vast amounts of data. Meeting the demands of analysing this data requires innovative solutions, and artificial intelligence techniques offer the necessary support. This systematic review aims to evaluate the effectiveness of deep learning techniques for crop classification using remote sensing data from aerial imagery. The reviewed papers focus on a variety of deep learning architectures, including convolutional neural networks (CNNs), long short-term memory networks, transformers, and hybrid CNN-recurrent neural network models, and incorporate techniques such as data augmentation, transfer learning, and multimodal fusion to improve model performance. The review analyses the use of these techniques to boost crop classification accuracy by developing new deep learning architectures or by combining various types of remote sensing data. Additionally, it assesses the impact of factors like spatial and spectral resolution, image annotation, and sample quality on crop classification. Ensembling models or integrating multiple data sources tends to enhance the classification accuracy of deep learning models. Satellite imagery is the most commonly used data source due to its accessibility and typically free availability. The study highlights the requirement for large amounts of training data and the incorporation of non-crop classes to enhance accuracy and provide valuable insights into the current state of deep learning models and datasets for crop classification tasks.

2023

Antimicrobial Effects and Antioxidant Activity of Myrtus communis L. Essential Oil in Beef Stored under Different Packaging Conditions

Autores
Moura, D; Vilela, J; Saraiva, S; Monteiro-Silva, F; De Almeida, JMMM; Saraiva, C;

Publicação
FOODS

Abstract
The aim of this study was to assess the antimicrobial effects of myrtle (Myrtus communis L.) essential oil (EO) on pathogenic (E. coli O157:H7 NCTC 12900; Listeria monocytogenes ATCC BAA-679) and spoilage microbiota in beef and determine its minimum inhibitory concentration (MIC) and antioxidant activity. The behavior of LAB, Enterobacteriaceae, Pseudomonas spp., and fungi, as well as total mesophilic (TM) and total psychotropic (TP) counts, in beef samples, was analyzed during storage at 2 and 8 C-degrees in two different packaging systems (aerobiosis and vacuum). Leaves of myrtle were dried, its EO was extracted by hydrodistillation using a Clevenger-type apparatus, and the chemical composition was determined using chromatographical techniques. The major compounds obtained were myrtenyl acetate (15.5%), beta-linalool (12.3%), 1,8-cineole (eucalyptol; 9.9%), geranyl acetate (7.4%), limonene (6.2%), alpha-pinene (4.4%), linalyl o-aminobenzoate (5.8%), alpha-terpineol (2.7%), and myrtenol (1.2%). Myrtle EO presented a MIC of 25 mu L/mL for E. coli O157:H7 NCTC 12900, E. coli, Listeria monocytogenes ATCC BAA-679, Enterobacteriaceae, and E. coli O157:H7 ATCC 35150 and 50 mu L/mL for Pseudomonas spp. The samples packed in aerobiosis had higher counts of deteriorative microorganisms than samples packed under vacuum, and samples with myrtle EO presented the lowest microbial contents, indicating good antimicrobial activity in beef samples. Myrtle EO is a viable natural alternative to eliminate or reduce the pathogenic and deteriorative microorganisms of meat, preventing their growth and enhancing meat safety.

  • 57
  • 363