2023
Autores
Oliveira, PM;
Publicação
2023 6th Experiment@ International Conference (exp.at'23), Évora, Portugal, June 5-7, 2023
Abstract
The recent release of ChatGPT-3 by OpenAI may have been a major disruptive mark in terms of Artificial Intelligence based tools. The testing and rapid user adoption rate of ChatGPT-3 was massive with a worldwide impact. Despite its recent public release ChatGPT-3 is already eliciting a mix of positive reactions revealing outstanding positive aspects as well as some negative ones. A short evaluation of ChatGPT-3 is presented, using the context of genetic algorithms, a topic lectured in introductory artificial intelligence courses. Examples outlining potential advantages of adopting ChatGPT and disadvantages which raise ethical issues and may limit its use are presented. © 2023 IEEE.
2023
Autores
Yalçinkaya, B; Couceiro, MS; Soares, SP; Valente, A;
Publicação
Sensors
Abstract
2023
Autores
Yalcinkaya, B; Couceiro, MS; Soares, SP; Valente, A;
Publicação
SENSORS
Abstract
This study presents a novel approach to cope with the human behaviour uncertainty during Human-Robot Collaboration (HRC) in dynamic and unstructured environments, such as agriculture, forestry, and construction. These challenging tasks, which often require excessive time, labour and are hazardous for humans, provide ample room for improvement through collaboration with robots. However, the integration of humans in-the-loop raises open challenges due to the uncertainty that comes with the ambiguous nature of human behaviour. Such uncertainty makes it difficult to represent high-level human behaviour based on low-level sensory input data. The proposed Fuzzy State-Long Short-Term Memory (FS-LSTM) approach addresses this challenge by fuzzifying ambiguous sensory data and developing a combined activity recognition and sequence modelling system using state machines and the LSTM deep learning method. The evaluation process compares the traditional LSTM approach with raw sensory data inputs, a Fuzzy-LSTM approach with fuzzified inputs, and the proposed FS-LSTM approach. The results show that the use of fuzzified inputs significantly improves accuracy compared to traditional LSTM, and, while the fuzzy state machine approach provides similar results than the fuzzy one, it offers the added benefits of ensuring feasible transitions between activities with improved computational efficiency.
2023
Autores
de Araújo, FMA; Ferreira, AKC; Dantas, MA; Pimentel, HIC; Leal, PRA; de Carvalho, SLB; Fonseca Ferreira, NM; Valente, A; Soares, SFSP;
Publicação
Proceedings of the 11th International Conference on Sport Sciences Research and Technology Support, icSPORTS 2023, Rome, Italy, November 16-17, 2023.
Abstract
The use of technology applied in sports comes each year becoming a great tool to help athletes train. Moreover, the post-pandemic world is undergoing dramatic changes in the way of thinking and acting, with new ways of exercising emerging, but without leaving home. Thus this paper describes the development of a platform for training, focusing on Kendo practitioners (Japanese fencing) using virtual reality tools to allow athletes and training the distance. Through the use of a HMD (Head Mounted Device), kendokas will be able to practice blows and improve their reflex by a gamified experience in a virtual environment. © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)
2023
Autores
Ferreira, J; Puga, R; Boaventura, J; Abtahi, A; Santos, S;
Publicação
International Journal of Computer Information Systems and Industrial Management Applications
Abstract
As the need for replacing fossil and other non-renewable energy sources with renewables becomes more critical and urgent, wind energy appears to be among the two or three best choices for the short and medium time frames. The dominance of wind energy as the first choice in many regions, leads to an increasing impact of wind power quality on the overall grid. Wind energy’s inherent intermittent nature, both in intensity and longevity, could be an impediment to its adoption unless utility operators have the tools to anticipate the impact and integrate wind resources seamlessly by increasing or reducing its contribution to the overall capacity of the grid. The wind forecasting science is well established and has been the subject of serious study in multiple fields such as fluid dynamics, statistical analysis and numerical simulation and modeling. With the renewed interest and dependence on wind as a major energy source, these efforts have increased exponentially. One of the areas that shows great promise in developing improved forecasting tools, is the category of “Biological Inspired Optimization Techniques. The study presented in this paper is the result of a study to survey and assess an array of forecasting models and algorithms. © MIR Labs, www.mirlabs.net/ijcisim/index.html
2023
Autores
Nunes, C; Nunes, R; Pires, EJS; Barroso, J; Reis, A;
Publicação
APPLIED SCIENCES-BASEL
Abstract
The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna's functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental's EOL.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.