2025
Autores
Ferreira, L; Bias, ED; Barros, QS; Pádua, L; Matricardi, EAT; Sousa, JJ;
Publicação
FORESTS
Abstract
Reduced-impact logging (RIL) has been recognized as a promising strategy for biodiversity conservation and carbon sequestration within sustainable forest management (SFM) areas. However, monitoring the forest understory-a critical area for assessing logging impacts-remains challenging due to limitations in conventional methods such as field inventories and global navigation satellite system (GNSS) surveys, which are time-consuming, costly, and often lack accuracy in complex environments. Additionally, aerial and satellite imagery frequently underestimate the full extent of disturbances as the forest canopy obscures understory impacts. This study examines the effectiveness of the relative density model (RDM), derived from airborne LiDAR data, for mapping and monitoring understory disturbances. A field-based validation of LiDAR-derived RDM was conducted across 25 sites, totaling 5504.5 hectares within the Jamari National Forest, Rond & ocirc;nia, Brazil. The results indicate that the RDM accurately delineates disturbances caused by logging infrastructure, with over 90% agreement with GNSS field data. However, the model showed the greatest discrepancy for skid trails, which, despite their lower accuracy in modeling, accounted for the largest proportion of the total impacted area among infrastructure. The findings include the mapping of 35.1 km of primary roads, 117.4 km of secondary roads, 595.6 km of skid trails, and 323 log landings, with skid trails comprising the largest proportion of area occupied by logging infrastructure. It is recommended that airborne LiDAR assessments be conducted up to two years post-logging, as impacts become less detectable over time. This study highlights LiDAR data as a reliable alternative to traditional monitoring approaches, with the ability to detect understory impacts more comprehensively for monitoring selective logging in SFM areas of the Amazon, providing a valuable tool for both conservation and climate mitigation efforts.
2025
Autores
Gameiro, T; Pereira, T; Moghadaspoura, H; Di Giorgio, F; Viegas, C; Ferreira, N; Ferreira, J; Soares, S; Valente, A;
Publicação
ALGORITHMS
Abstract
The autonomous navigation of unmanned ground vehicles (UGVs) in unstructured environments, such as agricultural or forestry settings, has been the subject of extensive research by various investigators. The navigation capability of a UGV in unstructured environments requires considering numerous factors, including the quality of data reception that allows reliable interpretation of what the UGV perceives in a given environment, as well as the use these data to control the UGV's navigation. This article aims to study different PID control algorithms to enable autonomous navigation on a robotic platform. The robotic platform consists of a forestry tractor, used for forest cleaning tasks, which was converted into a UGV through the integration of sensors. Using sensor data, the UGV's position and orientation are obtained and utilized for navigation by inputting these data into a PID control algorithm. The correct choice of PID control algorithm involved the study, analysis, and implementation of different controllers, leading to the conclusion that the Vector Field control algorithm demonstrated better performance compared to the others studied and implemented in this paper.
2025
Autores
Gonçalves, A; Pereira, T; Lopes, D; Cunha, F; Lopes, F; Coutinho, F; Barreiros, J; Durães, J; Santos, P; Simões, F; Ferreira, P; Freitas, DC; Trovão, F; Santos, V; Ferreira, P; Ferreira, M;
Publicação
Automation
Abstract
This paper presents a method for position correction in collaborative robots, applied to a case study in an industrial environment. The case study is aligned with the GreenAuto project and aims to optimize industrial processes through the integration of various hardware elements. The case study focuses on tightening a specific number of nuts onto bolts located on a partition plate, referred to as “Cloison”, which is mounted on commercial vans produced by Stellantis, to secure the plate. The main challenge lies in deviations that may occur in the plate during its assembly process, leading to uncertainties in its fastening to the vehicles. To address this and optimize the process, a collaborative robot was integrated with a 3D vision system and a screwdriving system. By using the 3D vision system, it is possible to determine the bolts’ positions and adjust them within the robot’s frame of reference, enabling the screwdriving system to tighten the nuts accurately. Thus, the proposed method aims to integrate these different systems to tighten the nuts effectively, regardless of the deviations that may arise in the plate during assembly. © 2025 by the authors.
2025
Autores
Renan Tosin; Leandro Rodrigues; Maria Santos-Campos; Igor Gonçalves; Catarina Barbosa; Filipe Santos; Rui Martins; Mario Cunha;
Publicação
Smart Agricultural Technology
Abstract
2025
Autores
Mafalda Reis Pereira; Renan Tosin; Filipe Neves dos Santos; Fernando Tavares; Mário Cunha;
Publicação
Computers and Electronics in Agriculture
Abstract
2024
Autores
Deguchi, T; Baltazar, AR; dos Santos, FN; Mendonça, H;
Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Since the advent of agriculture, humans have considered phytopharmaceutical products to control pests and reduce losses in farming. Sometimes some of these products, such pesticides, can potentially harm the soil life. In the literature there is evidence that AI and image processing can have a positive contribution to reduce phytopharmaceutical losses, when used in variable rate sprayers. However, it is possible to improve the existing sprayer system's precision, accuracy, and mechanical aspects. This work proposes spraying solution called GraDeS solution (Grape Detection Sprayer). GraDeS solution is a sprayer with two degrees of freedom, controlled by a AI-based algorithm to precisely treat grape bunches diseases. The experiments with the designed sprayer showed two key points. First, the deep learning algorithm recognized and tracked grape bunches. Even with structure movement and bunch covering, the algorithm employs several strategies to keep track of the discovered objects. Second, the robotic sprayer can improve precision in specified areas, such as exclusively spraying grape bunches. Because of the structure's reduced size, the system can be used in medium and small robots.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.