Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2024

Survey of SLAM algorithms with ROS support

Autores
Teixeira, A; Costelha, H; Bento, LC; Neves, C;

Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
Simultaneous Localization and Mapping (SLAM) algorithms are a key component in enabling autonomous navigation for robotic systems. This study presents a comprehensive assessment of state-of-the-art SLAM algorithms, focusing exclusively on those with Robot Operating System (ROS) support. The study aims to provide insights into the computational performance of these algorithms by leveraging the benchmark results reported in their respective studies. Each algorithm's performance metrics, as reported in their benchmark studies, are analyzed and compared. This comparative analysis not only highlights the strengths and weaknesses of individual algorithms but also provides a broader understanding of their applicability across diverse robotic platforms and environments. Overall, this study contributes to the advancement of SLAM research by offering a comparative evaluation tailored to ROS-supported algorithms. The findings serve as a valuable resource to make informed decisions regarding the selection and implementation of SLAM solutions in real-world applications.

2024

Point cloud alignment for deposited material assessment in tunnel environments

Autores
Teixeira, A; Costelha, H; Neves, C; Bento, LC;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING, TECHNOLOGY, AND INNOVATION, ICE/ITMC 2024

Abstract
The assessment of deposited material in tunnel reinforcement operations can be performed using a 3D model generated from multiple scans. For this purpose, an accurate alignment of the scanned models is required. Aligning existing structure model with data scanned after surface deformations can be challenging, particularly if reference markers are not available or were displaced. For scenarios where the surrounding structure is largely changed, certain procedures can be adapted when processing the scanned data to achieve consistent alignment between scanned and reference structure models. This work proposes a methodology to cope with these situations, analysing the impact of different approaches. Experiments were performed in a realistic scenario related with shotcrete of railway tunnels wall surfaces, with the results showing the applicability of the developed work. The proposed procedure relies in highlighting the importance of specific points that describe the same feature in the reference and aligning PC. The proposed methodology achieved an RMS difference of 0.0173 m, which lead to a drastic improvement in the point cloud alignment compared to the use of standard ICP algorithm without data preprocessing, which achieved 0.0518 m in the studied use-case.

2024

Flexible Manufacturing Systems Through the Integration of Asset Administration Shells, Skill-Based Manufacturing, and OPC UA

Autores
Martins, A; Costelha, H; Neves, C; Cosgrove, J; Lyons, JG;

Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2

Abstract
The advent of Industry 4.0 has created a need for more flexible and adaptable manufacturing systems. This paper proposes the integration of AAS (Asset Administration Shells), SBM (Skill-based manufacturing) and OPC UA (Open Platform Communications Unified Architecture), to enable more flexible manufacturing systems. The integration of these concepts provides a solution for achieving faster and easier dynamic reconfiguration in manufacturing systems, which is essential for fulfilling the demand of customization and flexibility in modern production systems. An Asset Administration Shell provides a standardized structure for describing assets and their administration, while Skill-based manufacturing enables the deployment of task-oriented machines that can self-configure, self-diagnose, and self-optimize their performance. The use of OPC UA as a communication protocol ensures that these systems can communicate with one another in a secure and reliable way. This paper presents a conceptual framework for the integration of these three open technologies. This framework contributes to having a single interface and source of information for every asset, which can lead to increased efficiency by reducing changeover times, thus reducing the overall cost in flexible manufacturing system scenarios. Future work will focus on the implementation and validation of this framework in a real-world manufacturing setting.

2024

Industry 4.0 Machine-to-Machine Communication Protocols and Architectures on the Shop Floor

Autores
Cavalcanti, M; Costelha, H; Neves, C;

Publicação
Springer Tracts in Additive Manufacturing

Abstract
The concept of Industry 4.0 and the introduction of the Internet of Things (IoT) on industrial applications, known as Industrial Internet of Things (IIoT), have been changing the scenario of industrial automation. This new paradigm is expected to optimize industrial processes, increase productivity, lower costs and improve operations integration. For that, structured Machine-to-Machine (M2M) communication is key to ensure agility, interoperability and reliability, with several solutions currently available in the literature and in industry. This paper reviews the state of the art on industrial communication protocols and architectures, providing a classification and comparison of these different solutions based on their most relevant features in the context of Industry 4.0. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

2024

A multidisciplinary engineering-based approach for tunnelling strengthening with a new fibre reinforced shotcrete technology

Autores
Barros, J; Costelha, H; Bento, D; Brites, N; Luis, R; Patricio, H; Cunha, V; Bento, L; Miranda, T; Coelho, P; Azenha, M; Neves, C; Salehian, H; Moniz, G; Nematollahi, M; Teixeira, A; Taheri, M; Mezhyrych, A; Hosseinpour, E; Correia, T; Kazemi, H; Hassanshahi, O; Rashiddel, A; Esmail, B;

Publicação
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY

Abstract
This paper describes the relevant research activities that are being carried out on the development of a novel shotcrete technology capable of applying, autonomously and in real time, fibre reinforced shotcrete (FRS) with tailored properties regarding the optimum structural strengthening of railway tunnels (RT). This technique allows to apply fibre reinforced concrete (FRC) of strain softening (SSFRC) and strain hardening (SHFRC) according to a multi -level advanced numerical simulation that considers the relevant nonlinear features of these FRC, as well as their interaction with the surrounding soil, for an intended strengthening performance of the RT. Building information modelling (BIM) is used for assisting on the development of data files of the involved design software, integrating geometric assessment of a RT, damages from inspection and diagnosis, and the characteristics of the FRS strengthening solution. A dedicated computational tool was developed to design FRC with target properties. The preliminary experimental results on the evaluation of the relevant mechanical properties of the FRS are presented and discussed, as well as the experimental tests on the bond between FRS and current substrates found in RT. Representative numerical simulations were performed to demonstrate the structural performance of the proposed FRS -based strengthening technique. Computational tools capable of assuring, in real time, the aimed thickness of the layers forming the FRS strengthening shell were also developed. The first generation of a mechanical device for controlling the amount of fibres to be added, in real time, to the FRS mixture was conceived, built and tested. A mechanism is also being developed to improve the fibre distribution during its introduction through the mechanical device to avoid fibre balling. This work describes the relevant achievements already attained, as introduces the planned future initiatives in the scope of this project.

2024

Allocation of national renewable expansion and sectoral demand reduction targets to municipal level

Autores
Schneider, S; Parada, E; Sengl, D; Baptista, J; Oliveira, PM;

Publicação
FRONTIERS IN SUSTAINABLE CITIES

Abstract
Despite the ubiquitous term climate neutral cities, there is a distinct lack of quantifiable and meaningful municipal decarbonization goals in terms of the targeted energy balance and composition that collectively connect to national scenarios. In this paper we present a simple but useful allocation approach to derive municipal targets for energy demand reduction and renewable expansion based on national energy transition strategies in combination with local potential estimators. The allocation uses local and regional potential estimates for demand reduction and the expansion of renewables and differentiates resulting municipal needs of action accordingly. The resulting targets are visualized and opened as a decision support system (DSS) on a web-platform to facilitate the discussion on effort sharing and potential realization in the decarbonization of society. With the proposed framework, different national scenarios, and their implications for municipal needs for action can be compared and their implications made explicit.

  • 29
  • 369