Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2024

Design and Development of a Differential Drive Platform for Dragster Competition

Autores
Grilo, V; Ferreira, E; Barbosa, A; Chellal, AA; Lima, J;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Robotics competitions have been increasing in the last years since they bring several impacts on students education, such as technical skill development, teamwork, resilience and decision making withing the STEM skills. The article highlights the significance of robotics competitions as platforms for fostering innovation and driving advancements in the field of robotics. This article primarily focuses on the development of a robot in the Dragster category for the 2023 Portuguese Robotics Open. It outlines the strategies devised to tackle the competition's challenges and discusses the obstacles encountered along with the corresponding solutions employed. The article delves into the specific details of the challenges faced and the iterative processes undertaken to enhance the robot's performance and functionalities. By sharing the insights gained from the project, future proposals for iterations of the robot will be presented, aiming to further augment its features and overall performance while sharing knowledge with other teams and community.

2024

An Artificial Intelligence-Based Method to Identify the Stage of Maturation in Olive Oil Mills

Autores
Mendes, J; Lima, J; Costa, LA; Rodrigues, N; Leitao, P; Pereira, AI;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023

Abstract
Identifying the maturation stage is an added value for olive oil producers and consumers, whether this is done to predict the best harvest time, give us more information about the olive oil, or even adapt techniques and extraction parameters in the olive oil mill. In this way, the proposed work presents a new method to identify and count the number of olives that enter the mill as well as their stage of maturation. It is based on artificial intelligence (AI) and deep learning algorithms, using the two most recent versions of YOLO, YOLOv7 and YOLOv8. The obtained results demonstrate the possibility of using this type of application in a real environment, managing to obtain a mAP of approximately 79% with YOLOv8 in the five maturation stages, with a processing rate of approximately 16 FPS increasing this with YOLOv7 to 36.5 FPS reaching a 66% mAP.

2024

Artificial Intelligence-Based Control of Autonomous Vehicles in Simulation: A CNN vs. RL Case Study

Autores
Vasiljevic, I; Music, J; Lima, J;

Publicação
Communications in Computer and Information Science

Abstract
The article provides a comparison of Convolutional Neural Network (CNN) and Reinforcement Learning (RL) applied to the field of autonomous driving within the CARLA (CAr Learning to Act) simulator for training and evaluation. The analysis of results revealed CNNs better overall performance, as it demonstrated a more refined driving experience, shorter training durations, and a more straightforward learning curve and optimization process. However, it required data labelling. In contrast, RL relayed on an exhaustive (unsupervised) exploration of different models, ultimately selecting the model at timestep 600,000, which had the highest mean reward. Nevertheless, RL’s approach revealed its susceptibility to excessive oscillations and inconsistencies, necessitating additional optimization and tuning of hyperparameters and reward functions. This conclusion is further substantiated by a range of used performance metrics (objective and subjective), designed to assess the performance of each approach. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

2024

Deep Learning-Based Classification and Quantification of Emulsion Droplets: A YOLOv7 Approach

Autores
Mendes, J; Silva, AS; Roman, FF; de Tuesta, JLD; Lima, J; Gomes, HT; Pereira, AI;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023

Abstract
This study focuses on the analysis of emulsion pictures to understand important parameters. While droplet size is a key parameter in emulsion science, manual procedures have been the traditional approach for its determination. Here we introduced the application of YOLOv7, a recently launched deep-learning model, for classifying emulsion droplets. A comparison was made between the two methods for calculating droplet size distribution. One of the methods, combined with YOLOv7, achieved 97.26% accuracy. These results highlight the potential of sophisticated image-processing techniques, particularly deep learning, in chemistry-related topics. The study anticipates further exploration of deep learning tools in other chemistry-related fields, emphasizing their potential for achieving satisfactory performance.

2024

Route Optimization for Urban Last-Mile Delivery: Truck vs. Drone Performance

Autores
Silva, AS; Berger, GS; Mendes, J; Brito, T; Lima, J; Gomes, HT; Pereira, AI;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT I

Abstract
In urban environments, last-mile item delivery relies heavily on trucks, causing issues like noise pollution and traffic congestion. Unmanned Aerial Vehicles (UAVs) offer a promising solution to these challenges. This study compares the effectiveness of delivery using trucks versus drones. Two customer datasets, one clustered and one random, were used for testing. Route optimization involved four deterministic and four non-deterministic algorithms. The performance of these algorithms, considering the total distance traveled, was evaluated across different datasets and vehicle types. The top two algorithms were further assessed for environmental impact and cost efficiency. Battery consumption along the routes was also analyzed to gauge operational feasibility.

2024

A Comparison of Fiducial Markers Pose Estimation for UAVs Indoor Precision Landing

Autores
Bonzatto, L Jr; Berger, GS; Júnior, AO; Braun, J; Wehrmeister, MA; Pinto, MF; Lima, J;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023

Abstract
Cooperative robotics is exponentially gaining strength in scientific research, especially regarding the cooperation between ground mobile robots and Unmanned Aerial Vehicles (UAVs), where the remaining challenges are equipollent to its potential uses in different fields, such as agriculture and electrical tower inspections. Due to the complexity involved in the process, precision landing by UAVs on moving robotic platforms for tasks such as battery hot-swapping is a major open research question. This work explores the feasibility and accuracy of different fiducial markers to aid in the precision landing process by a UAV on a mobile robotic platform. For this purpose, a TelloUAV was used to acquire images at different positions, angles, and distances from ArUco, ARTag, and ArUco Board markers to evaluate their detection precision. The analyses demonstrate the highest reliability in the measurements performed through the ArUco marker. Future work will be devoted to using the ArUco marker to perform precision landing on a mobile robotic platform, considering the necessary adjustments to lessen the impact of errors intrinsic to detecting the fiducial marker during the landing procedure.

  • 23
  • 377