2024
Autores
Rebelo, PM; Féliz, MC; Oliveira, PM; Sobreira, H; Costa, P;
Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1
Abstract
The need for interoperability between robots of different brands and navigation typologies, graph-based and free navigation, is increasing and this has led to the development of a new approach to empower a graph and ROS-based robot fleet manager for the management of free navigation mobile robots. For this implementation and validation, in real tests, the OMRON LD-90 was the mobile robot platform chosen, which has the particularity of not allowing the execution of a waypoints sequence. A software module was developed to exchange data between a non-ROS-based mobile robot and a specific ROS-based robot fleet manager. This is an approach applicable to any free navigation Autonomous Mobile Robot (AMR) with the necessary adaptations regarding the information provided by the different robot brands.
2024
Autores
Silva, RT; Brilhante, M; Sobreira, H; Matos, D; Costa, P;
Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) have emerged as key innovations in the industry world, with AMRs offering flexibility a nd adaptability for dynamic environments, while AGVs provide high accuracy for repetitive tasks; thus, this research proposes a study of fleets of both AGVs and AMRs to enhance productivity and efficiency in industrial settings. Several tests were performed where the duration of a mission, the success and collision rate, and the average number of disputes per mission were analyzed in order to obtain results. In conclusion, while AGVs tend to be more reliable and consistent in task completion, AMRs offer greater flexibility a nd speed.
2024
Autores
Piardi, L; Leitao, P; Costa, P; de Oliveira, AS;
Publicação
SERVICE ORIENTED, HOLONIC AND MULTI-AGENT MANUFACTURING SYSTEMS FOR INDUSTRY OF THE FUTURE, SOHOMA 2023
Abstract
Fault tolerance (FT) is a critical aspect of industry, where systems are susceptible to disturbance and faults. Traditional FT models, based on the centralization of information to handle fault episodes, no longer meet the current industrial models based on Cyber-physical Systems (CPS). Self-healing is a promising approach for FT in CPS, consisting of the individual competence of each component in detect, diagnose and recover from failures. With this in mind, this paper discusses the engineering of self-healing fault-tolerance in industrial CPS, analyzing the maturation process of this paradigm from the local model through collaboration models and later to self-organization features. The paper also discusses the main research challenges that self-healing FT faces during this process.
2024
Autores
Piardi, L; Oliveira, A; Costa, P; Leitão, P;
Publicação
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA
Abstract
Cyber-physical systems (CPS) rapidly expand within industrial contexts in a new era of digitalization, processing power, and inter-device communication capabilities. These advancements integrate technologies such as the Internet of Things (IoT), artificial intelligence (AI), and cloud and edge computing, granting processes and operations a high degree of autonomy. In addition, these interconnections foster collective intelligence arising from information exchange and collaboration between components, often outperforming individual capabilities. This collective intelligence manifests in fault detection and diagnosis (FDD) tasks within CPS, as it significantly improves the flexibility, performance, and scalability. However, the inherent complexity of CPS poses challenges in determining the best configuration of the collaboration parameters, such as when and how to collaborate, wherein incorrect adjustments may lead to decision errors and compromise the system's performance. With this in mind, this paper proposes seven metrics to evaluate collaboration performance for fault detection and diagnosis in multi-agent systems (MAS)-based CPS, evaluating when the collaboration is beneficial or when the collaboration parameters need to be adjusted. The experiments focus on collaborative fault detection in temperature and humidity sensors within warehouse racks, where the proposed evaluation metrics point out the impact of collaboration on the detection task, as well as possible actions to be adopted to improve the agent's performance. © 2024 IEEE.
2024
Autores
Gonçalves E.S.; Gonçalves J.; Rosse H.; Costa J.; Jorge L.; Gonçalves J.A.; Coelho J.P.; Ribeiro J.E.;
Publicação
Procedia Structural Integrity
Abstract
The energy storage batteries, employed in solar systems installed on lampposts, are usually placed in devices such as switchboards fixed at an elevation near the top of the column. However, this storage solution becomes inefficient, because it is not possible to guarantee the control of the working temperature of the batteries, due to the low thermal insulation capacity of these storage devices. In this sense, an underground compartment made of concrete, steel plate and rock wool were created, embedded in the foundation of the lamppost, with the purpose of using geothermal energy to maintain an adequate temperature inside the compartment. To verify the temperature inside the battery storage compartment, a thermal analysis was performed, where heat transfer by conduction, convection and radiation was considered. Analyses were performed in steady state, and later, transient state, considering the initial temperatures of the thermal study in the previous steady state. With a storage volume of 1m3 and the base of the compartment at a depth of 2m, it was verified that it is possible to use geothermal energy to cool or heat, depending on the season, a system through geothermal energy. Considering a typical day in July, with room temperature of 35oC, a reduction of approximately 8oC was obtained inside the storage compartment, compared to the ambient temperature.
2024
Autores
Gonçalves E.S.; Gonçalves J.; Rosse H.; Costa J.; Jorge L.; Gonçalves J.A.; Coelho J.P.; Ribeiro J.E.;
Publicação
Procedia Structural Integrity
Abstract
When people move around a town, at some point in their journey they need to cross the road using a dedicated crosswalk. However, crossing is not always done safely due to weather conditions, lack of visibility or distraction. The VALLPASS project, aims to install two lampposts in opposite positions to the direction of crossing, with various functionalities and technological innovations, creating a luminous tunnel for the safe passage of pedestrians. To verify the mechanical resistance of the lighting poles, numerical simulations were performed using the finite element method, where the boundary conditions considered the criteria defined by the European standard EN-40 "Lighting Columns". This standard specifies the loads acting on the column, namely the horizontal forces due to the action of wind according to standard NP EN 1991-1-4:2010 and the vertical forces due to the self-weight of the entire structure. Considering a lighting pole with a square lower section and a cylindrical upper section, with a total height of 7 meters and with a support structure for photovoltaic panels, according to the static analysis performed, a maximum combination of axial and bending stresses of 138.74MPa, was obtained in the connection zone between the square section and the pole shaft. The maximum displacement of 6.9cm, was obtained at the free ends of the photovoltaic panel support structure and a minimum factor of safety of 1.64 in the zone where the combination of axial and bending stresses is more severe.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.