2024
Autores
Vaz, CB; Sena, I; Braga, AC; Novais, P; Fernandes, FP; Lima, J; Pereira, AI;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT I
Abstract
Retail transactions represent sales of consumer goods, or final goods, by consumer companies. This sector faces security challenges due to the hustle and bustle of sales, affecting employees' workload. In this context, it is essential to estimate the number of customers who will appear in the store daily so that companies can dynamically adjust employee schedules, aligning workforce capacity with expected demand. This can be achieved by forecasting transactions using past observations and forecasting algorithms. This study aims to compare the ARIMA time series algorithm with several Machine Learning algorithms to predict the number of daily transactions in different store patterns, considering data variability. The study identifies four typical store patterns based on these criteria using daily transaction data between 2019 and 2023 from all retail stores of the leading company in Portugal. Due to data variability and the results obtained, the algorithm that presents the most minor errors in predicting daily transactions is selected for each store. This study's ultimate goal is to fill the gap in forecasting daily customer transactions and present a suitable forecasting model to mitigate risks associated with transactions in retail stores.
2024
Autores
Silva, AS; Lima, J; Silva, AMT; Gomes, HT; Pereira, AI;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT II
Abstract
The automotive industry is witnessing a surge in the production of electric vehicles (EVs) driven by stringent emission regulations. Despite this growth, heavy-duty truck fleets, particularly in waste collection, remain predominantly combustion-based ones. Waste collection is critical in urban environments, presenting unique challenges due to confined operational regions. One alternative to increase EVs in waste collection is to substitute the smaller truck fleets used for waste collection in constrained environments, such as narrow streets, by EVs. In this paper, we present a new formulation for the waste collection problem that considers a truck fleet comprised of smaller EVs and regular combustion trucks. The smaller trucks are proposed for the waste collection of specific sites (i.e. dumpsters in narrow streets). Our formulation considers battery limitations of electric trucks and flexible time windows for the waste collection task. The solution was validated by comparing the emission of CO2 and collection costs of a fleet comprised solely of combustion trucks and the hybrid fleet proposed here. The results showed that using a hybrid fleet significantly reduced waste collection costs and environmental impacts.
2024
Autores
Klein, LC; Mendes, J; Braun, J; Martins, FN; Fabro, JA; Costa, P; Pereira, AI; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT I
Abstract
Several approaches have been developed over time aiming to improve the localization aspects, especially in mobile robotics. Besides the more traditional techniques, mainly based on analytical models, artificial intelligence has emerged as an interesting alternative. The current study proposes to explore the machine learning model structure optimization for pose estimation, using the RobotAtFactory 4.0 competition as the main context. Using a Bayesian Optimization-based framework, the parameters of a Multi-Layer Perceptron (MLP) model, trained to estimate the components of the 2D pose (x, y, and theta) of the robot were optimized in four different scenarios of the same context. The results obtained showed a quality improvement of up to 60% on the estimation when compared with the modes without any optimization. Another aspect observed was the different optimizations found for each model, even in the same scenario. An additional interesting result was the possibility of the reuse of optimization between scenarios, presenting an interesting approach to reduce time and computational resources.
2024
Autores
Lopes, MS; Moreira, AP; Silva, MF; Santos, F;
Publicação
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 2, CLAWAR 2023
Abstract
Quadruped robots have gained significant attention in the robotics world due to their capability to traverse unstructured terrains, making them advantageous in search and rescue and surveillance operations. However, their utility is substantially restricted in situations where object manipulation is necessary. A potential solution is to integrate a robotic arm, although this can be challenging since the arm's addition may unbalance the whole system, affecting the quadruped locomotion. To address this issue, the robotic arm must be adapted to the quadruped robot, which is not viable with commercially available products. This paper details the design and development of a robotic arm that has been specifically built to integrate with a quadruped robot to use in a variety of agricultural and industrial applications. The design of the arm, including its physical model and kinematic configuration, is presented. To assess the effectiveness of the prototype, a simulation was conducted with a motion-planning algorithm based on the arm's inverse kinematics. The simulation results confirm the system's stability and the functionality of the robotic arm's movement.
2024
Autores
Magalhaes, SAC; dos Santos, FN; Moreira, AP; Dias, JMM;
Publicação
ROBOTICA
Abstract
Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects' spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: How can we use and control monocular sensors to perceive objects' position in the 3D task space? Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.
2024
Autores
Costa, GM; Petry, MR; Martins, JG; Moreira, APGM;
Publicação
IEEE ACCESS
Abstract
Fiducial markers play a fundamental role in various fields in which precise localization and tracking are paramount. In Augmented Reality, they provide a known reference point in the physical world so that AR systems can accurately identify, track, and overlay virtual objects. This accuracy is essential for creating a seamless and immersive AR experience, particularly when prompted to cope with the sub-millimeter requirements of medical and industrial applications. This research article presents a comparative analysis of four fiducial marker tracking algorithms, aiming to assess and benchmark their accuracy and precision. The proposed methodology compares the pose estimated by four algorithms running on Hololens 2 with those provided by a highly accurate ground truth system. Each fiducial marker was positioned in 25 sampling points with different distances and orientations. The proposed evaluation method is not influenced by human error, relying only on a high-frequency and accurate motion tracking system as ground truth. This research shows that it is possible to track the fiducial markers with translation and rotation errors as low as 1.36 mm and 0.015 degrees using ArUco and Vuforia, respectively.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.