Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2024

Automatic Fall Detection with Thermal Camera

Autores
Kalbermatter, RB; Franco, T; Pereira, AI; Valente, A; Soares, SP; Lima, J;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023

Abstract
People are living longer, promoting new challenges in healthcare. Many older adults prefer to age in their own homes rather than in healthcare institutions. Portugal has seen a similar trend, and public and private home care solutions have been developed. However, age-related pathologies can affect an elderly person's ability to perform daily tasks independently. Ambient Assisted Living (AAL) is a domain that uses information and communication technologies to improve the quality of life of older adults. AI-based fall detection systems have been integrated into AAL studies, and posture estimation tools are important for monitoring patients. In this study, the OpenCV and the YOLOv7 machine learning framework are used to develop a fall detection system based on posture analysis. To protect patient privacy, the use of a thermal camera is proposed to prevent facial recognition. The developed system was applied and validated in the real scenario.

2024

A Performance Comparison between Different Industrial Real-Time Indoor Localization Systems for Mobile Platforms

Autores
Rebelo, PM; Lima, J; Soares, SP; Oliveira, PM; Sobreira, H; Costa, P;

Publicação
SENSORS

Abstract
The flexibility and versatility associated with autonomous mobile robots (AMR) have facilitated their integration into different types of industries and tasks. However, as the main objective of their implementation on the factory floor is to optimize processes and, consequently, the time associated with them, it is necessary to take into account the environment and congestion to which they are subjected. Localization, on the shop floor and in real time, is an important requirement to optimize the AMRs' trajectory management, thus avoiding livelocks and deadlocks during their movements in partnership with manual forklift operators and logistic trains. Threeof the most commonly used localization techniques in indoor environments (time of flight, angle of arrival, and time difference of arrival), as well as two of the most commonly used indoor localization methods in the industry (ultra-wideband, and ultrasound), are presented and compared in this paper. Furthermore, it identifies and compares three industrial indoor localization solutions: Qorvo, Eliko Kio, and Marvelmind, implemented in an industrial mobile platform, which is the main contribution of this paper. These solutions can be applied to both AMRs and other mobile platforms, such as forklifts and logistic trains. In terms of results, the Marvelmind system, which uses an ultrasound method, was the best solution.

2024

Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments

Autores
de Castro, GGR; Santos, TMB; Andrade, FAA; Lima, J; Haddad, DB; Honorio, LD; Pinto, MF;

Publicação
MACHINES

Abstract
This research presents a cooperation strategy for a heterogeneous group of robots that comprises two Unmanned Aerial Vehicles (UAVs) and one Unmanned Ground Vehicles (UGVs) to perform tasks in dynamic scenarios. This paper defines specific roles for the UAVs and UGV within the framework to address challenges like partially known terrains and dynamic obstacles. The UAVs are focused on aerial inspections and mapping, while UGV conducts ground-level inspections. In addition, the UAVs can return and land at the UGV base, in case of a low battery level, to perform hot swapping so as not to interrupt the inspection process. This research mainly emphasizes developing a robust Coverage Path Planning (CPP) algorithm that dynamically adapts paths to avoid collisions and ensure efficient coverage. The Wavefront algorithm was selected for the two-dimensional offline CPP. All robots must follow a predefined path generated by the offline CPP. The study also integrates advanced technologies like Neural Networks (NN) and Deep Reinforcement Learning (DRL) for adaptive path planning for both robots to enable real-time responses to dynamic obstacles. Extensive simulations using a Robot Operating System (ROS) and Gazebo platforms were conducted to validate the approach considering specific real-world situations, that is, an electrical substation, in order to demonstrate its functionality in addressing challenges in dynamic environments and advancing the field of autonomous robots.

2024

Advance Reconnaissance of UGV Path Planning Using Unmanned Aerial Vehicle to Carry Our Mission in Unknown Environment

Autores
Nowakowski, M; Berger, GS; Braun, J; Mendes, JA; Bonzatto, L Jr; Lima, J;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
The utilization of unmanned vehicles for specialized tasks has gained significant attention in both military and civilian domains. This article explores the application of commercial unmanned aerial vehicles (UAVs) for reconnaissance purposes, specifically to verify autonomous driving missions assigned to the developed TAERO manned-unmanned vehicle in field operations. The paper introduces the TAERO vehicle, highlighting its functionality and capabilities for unmanned missions. The architecture of the unmanned ground vehicle (UGV) system is discussed taking into consideration the autonomy subsystem and used location data. The limitations associated with terrain and potential obstacles are addressed as well as importance of acquiring accurate terrain information for successful autonomous operation. The solution proposed in our study involves the use of a commercially available UAV applied to the visual tracking of potential targets in an engagement scenario. Details related to flight route planning system, geolocation, target tracking, and data transmission between robotic platforms are discussed and presented in this work. The acquired real-time data plays a crucial role in confirm- ing the mission, making necessary adjustments, or altering the planned route. The UAV platform, known for its maneuverability and operational capabilities, can operate ahead as a reconnaissance element, improving the overall reconnaissance capabilities of the system. Upon completion of the mission, the UAV can return to the base or land on a moving vehicle platform. The authors proposed integration of a UAV that significantly enhances the autonomous mode capabilities of unmanned ground platform, improving operation in unknown environment during special mission.

2024

Using LiDAR Data as Image for AI to Recognize Objects in the Mobile Robot Operational Environment

Autores
Nowakowski, M; Kurylo, J; Braun, J; Berger, GS; Mendes, J; Lima, J;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023

Abstract
Nowadays, there has been a growing interest in the use of mobile robots for various applications, where the analysis of the operational environment is a crucial component to conduct our special tasks or missions. The main aim of this work was to implement artificial intelligence (AI) for object detection and distance estimation navigating the developed unmanned platform in unknown environments. Conventional approaches are based on vision systems analysis using neural networks for object detection, classification, and distance estimation. Unfortunately, in the case of precise operation, the used algorithms do not provide accurate data required by platforms operators as well as autonomy subsystems. To overcome this limitation, the authors propose a novel approach using the spatial data from laser scanners supplementing the acquisition of precise information about the detected object distance in the operational environment. In this article, we introduced the application of pretrained neural network models, typically used for vision systems, in analysing flat distributions of LiDAR point cloud surfaces. To achieve our goal, we have developed software that fuses detection algorithm (based on YOLO network) to detect objects and estimate their distances using the MiDaS depth model. Initially, the accuracy of distance estimation was evaluated through video stream testing in various scenarios. Furthermore, we have incorporated data from a laser scanner into the software, enabling precise distance measurements of the detected objects. The paper provides discussion on conducted experiments, obtained results, and implementation to improve performance of the described modular mobile platform.

2024

Ocean Relief-Based Heuristic for Robotic Mapping

Autores
Daros, FT; Teixeira, MAS; Rohrich, RF; Lima, J; de Oliveira, AS;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Order picking has driven an increase in the number of logistics researchers. Robotics can help reduce the operational cost of such a process, eliminating the need for a human operator to perform trivial and dangerous tasks such as moving around the warehouse. However, for a mobile robot to perform such tasks, certain problems, such as defining the best path, must be solved. Among the most prominent techniques applied in the calculation of the trajectories of these robotic agents are potential fields and the A* algorithm. However, these techniques have limitations. This study aims to demonstrate a new approach based on the behavior of oceanic relief to map an environment that simulates a logistics warehouse, considering distance, safety, and efficiency in trajectory planning. In this manner, we seek to solve some of the limitations of traditional algorithms. We propose a new mapping technique for mobile robots, followed by a new trajectory planning approach.

  • 13
  • 366