Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Susana Oliveira Silva

2014

Fiber cavity ring-down using an optical time-domain reflectometer

Autores
Passos, DJ; Silva, SO; Fernandes, JRA; Marques, MB; Frazao, O;

Publicação
Photonic Sensors

Abstract
This work presented a demonstration of the potential for a fiber based cavity ring-down (CRD) using an optical time-domain reflectometer (OTDR). The OTDR was used to send the impulses down into about 20 km of a standard single optical fiber, at the end of which the fiber cavity ring-down was placed. The OTDR measured no appreciable losses, so other CRDs multiplexed could be spliced in parallel along the same optical fiber. To demonstrate the behavior and sensitivity of the proposed configuration, a displacement sensor based on a fiber taper with a diameter of 50 µm was placed inside the fiber loop, and the induced losses were measured on the CRD signal — a sensitivity of 11.8 ± 0.5 µs/mm was achieved. The dynamic range of the sensing head used in this configuration was about 2 mm. Finally, this work was also compared with different works published in the literature. © 2014, The Author(s).

2013

H-2 Sensing Based on a Pd-Coated Tapered-FBG Fabricated by DUV Femtosecond Laser Technique

Autores
Silva, S; Coelho, L; Almeida, JM; Frazao, O; Santos, JL; Malcata, FX; Becker, M; Rothhardt, M; Bartelt, H;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
An optical fiber probe sensor based on a tapered-fiber Bragg grating (FBG) coated with 150-nm-thick Pd film is proposed for hydrogen detection. The FBG was written in a 50-mu m-diameter tapered fiber by deep ultraviolet femtosecond laser technology. A second FBG was inscribed in the 125 mu m-fiber section for temperature compensation. The sensing head was able to detect H-2 concentration in the range 0%-1% (v/v) H-2 at room temperature; a maximum sensitivity of 81.8 pm/%(v/v) H-2 was attained with temperature compensation. The influence of the Pd coating over temperature sensitivity of standard and tapered-FBGs is also presented.

2014

A New Cavity Ring-Down Topology for Remote Sensing

Autores
Passos, DJ; Silva, SO; Marques, MB; Frazao, O;

Publicação
2014 THIRD MEDITERRANEAN PHOTONICS CONFERENCE

Abstract
A new, fiber-based, cavity ring-down topology is presented which enables the application of the cavity ring-down technique to remote sensing, by the use of a large cavity ring and an optical circulator. For a proof of concept a 1.5 km ring is assembled and a taper is used as a sensing head for measuring displacement. The cavity ring-down technique is seen to hold some potential for remote sensing through its implementation on optical fibers.

2017

Multimode interference-based fiber sensor in a cavity ring-down system for refractive index measurement

Autores
Silva, S; Frazao, O;

Publicação
OPTICS AND LASER TECHNOLOGY

Abstract
This work reports a multimode interference-based fiber sensor in a cavity ring-down system (CRD) for sensing temperature-induced refractive index (RI) changes of water. The sensing head is based in multimodal interference (MMI) and it is placed inside the fiber loop cavity of the CRD system. A modulated laser source was used to send pulses down into the fiber loop cavity and an erbium-doped fiber amplifier (EDFA) was placed in the fiber ring to provide an observable signal with a reasonable decay time. The behavior of the sensing head to temperature was studied due to its intrinsic sensitivity to said parameter - a sensitivity of -1.6x10(-9) mu s/degrees C was attained. This allowed eliminating the temperature component from RI measurement of water and a linear sensitivity of 580 mu s/RIU in the RI range of 1.324-1.331 was obtained. The use of a MMI fiber sensor in the proposed CRD configuration allowed achieving a sensitivity similar to 4-fold than that obtained with a tilted fiber Bragg grating and similar to 2-fold than that when a micrometric channel inscribed in the fiber was used.

2013

Next generation of Fabry-Perot sensors for high-temperature

Autores
Ferreira, MS; Roriz, P; Silva, SO; Santos, JL; Frazao, O;

Publicação
OPTICAL FIBER TECHNOLOGY

Abstract
This paper presents an overview of optical fiber sensors based on Fabry-Perot interferometers with a focus on high temperature applications. The next generation of these fiber types interferometers are based in photonic crystal fibers, microfabrication as well as by chemical etching of special structures. High temperature measurements with linear behavior are observed namely in un-doped fibers, i.e., with a pure silica composition. Three new configurations are presented as possible solutions to be considered in extreme conditions.

2014

Optical Inclinometer Based on a Phase-Shifted Bragg Grating in a Taper Configuration

Autores
Moura, JP; Silva, SO; Becker, M; Rothhardt, M; Bartelt, H; Santos, JL; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
A simple optical inclinometer based on a phase-shifted Bragg grating in a taper configuration is proposed. Two phase-shifted fiber Bragg gratings were fabricated using a DUV femtosecond laser technique in the taper region, with taper waist diameters of 30 mu m and 50 mu m. Both sensing heads were compared based on their response to angle and strain. Whereas the higher diameter sensor yielded a higher sensitivity to curvature (23.8 +/- 0.3 pm/degree), the lower diameter one was more sensitive to strain (8.94 +/- 0.04 pm/mu epsilon).

  • 3
  • 22