2013
Autores
Toledo, FMB; Carravilla, MA; Ribeiro, C; Oliveira, JF; Gomes, AM;
Publicação
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS
Abstract
The nesting problem, also known as irregular packing problem, belongs to the generic class of cutting and packing (C&P) problems. It differs from other 2-D C&P problems in the irregular shape of the pieces. This paper proposes a new mixed-integer model in which binary decision variables are associated with each discrete point of the board (a dot) and with each piece type. It is much more flexible than previously proposed formulations and solves to optimality larger instances of the nesting problem, at the cost of having its precision dependent on board discretization. To date no results have been published concerning optimal solutions for nesting problems with more than 7 pieces. We ran computational experiments on 45 problem instances with the new model, solving to optimality 34 instances with a total number of pieces ranging from 16 to 56, depending on the number of piece types, grid resolution and the size of the board. A strong advantage of the model is its insensitivity to piece and board geometry, making it easy to extend to more complex problems such as non-convex boards, possibly with defects. Additionally, the number of binary variables does not depend on the total number of pieces but on the number of piece types, making the model particularly suitable for problems with few piece types. The discrete nature of the model requires a trade-off between grid resolution and problem size, as the number of binary variables grows with the square of the selected grid resolution and with board size.
2013
Autores
Carravilla, MA; Oliveira, JF;
Publicação
Agris On-line Papers in Economics and Informatics
Abstract
Operations Research/Management Science (OR/MS) can be described as the discipline of applying advanced analytical methods to help making better decisions and has been around in the agricultural and forestry management sectors since the fifties, approaching decision problems that range from more strategic sectorlevel planning to farm operation issues and integrated supply chain management. In this paper insights are given on the use of OR/MS in agriculture, illustrating them with cases drawn from the literature on this topic while keeping the descriptions accessible to uninitiated readers. The presence of OR/MS in Agriculture and Forest Management applications is already extensive but the potential for development is huge in times where resources are becoming increasingly scarce and more has to be done with less, in a sustainable way.
2013
Autores
Rocha, M; Oliveira, JF; Carravilla, MA;
Publicação
JOURNAL OF SCHEDULING
Abstract
In this work, we propose a general integer programming model to address the staff scheduling problem, flexible enough to be easily adapted to a wide-range of real-world problems. The model is applied with slight changes to two case studies: a glass plant and a continuous care unit, and also to a collection of benchmark instances available in the literature. The emphasis of our approach is on a novel formulation of sequence constraints and also on workload balance, which is tackled through cyclic scheduling. Models are solved using the CPLEX solver. Computational results indicate that optimal solutions can be achieved within a reasonable amount of time.
2013
Autores
Bennell, JA; Oliveira, JF; Waescher, G;
Publicação
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS
Abstract
2013
Autores
Viana, A; Pedroso, JP;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
s This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum: this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances. including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
2013
Autores
Constantino, M; Klimentova, X; Viana, A; Rais, A;
Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient-donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.