2024
Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;
Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024
Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.
2024
Autores
Ribeiro, P; Coelho, A; Campos, R;
Publicação
IEEE ACCESS
Abstract
Unmanned Aerial Vehicles (UAVs) are versatile platforms for carrying communications nodes such as Wi-Fi Access Points and cellular Base Stations. Flying Networks (FNs) offer on-demand wireless connectivity where terrestrial networks are impractical or unsustainable. However, managing communications resources in FNs presents challenges, particularly in optimizing UAV placement to maximize Quality of Service (QoS) for Ground Users (GUs) while minimizing energy consumption, given the UAVs' limited battery life. Existing multi-UAV placement solutions primarily focus on maximizing coverage areas, assuming static UAV positions and uniform GU distribution, overlooking energy efficiency and heterogeneous QoS requirements. We propose the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which defines and optimizes UAV trajectories to reduce energy consumption while ensuring QoS based on Signal-to-Noise Ratio (SNR) in the links with GUs. Additionally, we introduce the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate energy consumption. Using both MUAVE and ns-3 simulators, we evaluate SUPPLY in typical and random networking scenarios, focusing on energy consumption and network performance. Results show that SUPPLY reduces energy consumption by up to 25% with minimal impact on throughput and delay.
2024
Autores
Shafafi, K; Ricardo, M; Campos, R;
Publicação
IEEE ACCESS
Abstract
Unmanned Aerial Vehicles (UAVs) are suited as cost-effective and adaptable platforms for carrying Wi-Fi Access Points (APs) and cellular Base Stations (BSs). Implementing aerial networks in disaster management scenarios and crowded areas can effectively enhance Quality of Service (QoS). Maintaining Line-of-Sight (LoS) in such environments, especially at higher frequencies, is crucial for ensuring reliable communication networks with high capacity, particularly in environments with obstacles. The main contribution of this paper is a traffic- and obstacle-aware UAV positioning algorithm named Reinforcement Learning-based Traffic and Obstacle-aware Positioning Algorithm (RLTOPA), for such environments. RLTOPA determines the optimal position of the UAV by considering the positions of ground users, the coordinates of obstacles, and the traffic demands of users. This positioning aims to maximize QoS in terms of throughput by ensuring optimal LoS between ground users and the UAV. The network performance of the proposed solution, characterized in terms of mean delay and throughput, was evaluated using the ns-3 simulator. The results show up to 95% improvement in aggregate throughput and 71% in delay without compromising fairness.
2024
Autores
Fernandes, G; Fontes, H; Campos, R;
Publicação
CoRR
Abstract
2024
Autores
Coelho, A; Ruela, J; Queirós, G; Trancoso, R; Correia, PF; Ribeiro, F; Fontes, H; Campos, R; Ricardo, M;
Publicação
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.