Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Pedro Mendes

2025

Hyperbolic Metamaterial Platform for Refractometric Sensing

Autores
Carvalho, JPM; Almeida, MAS; Mendes, JP; Coelho, LCC; de Almeida, JMMM;

Publicação
METAMATERIALS XV

Abstract
Hyperbolic Metamaterials (HMM) are a class of photonic metamaterials exhibiting hyperbolic dispersion due to strong anisotropy. This work presents a numerical analysis and experimental characterization of a hyperbolic multilayer structure supporting surface plasmon polaritons for refractometric sensing applications. The device consists of a multilayer HMM composed of alternate Au and TiO2 layers, and the interaction of different plasmonic modes at each interface of the HMM is reported to enhance light- matter coupling, leading to an increased refractometric sensitivity. The hyperbolic dispersion and its effects on sensor performance are numerically investigated using the Effective Medium Theory (EMT) and validated through the Transfer Matrix Method (TMM). A fair match was obtained between EMT and TMM simulated spectra, validating the EMT approach for simulation of the optical properties of multilayer HMMs. Despite not predicting figures of merit (FOM) accurately, both the TMM and EMT approaches closely replicated the obtained experimental refractometric sensitivity.

2025

Hydrogen Optical Sensors Based on Magnesium Thin Films for Leak Detection in Industrial Settings

Autores
Santos, AD; de Almeida, JMMM; Mendes, JP; Almeida, MAS; Coelho, LC;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Hydrogen (H-2) infrastructure is the focus of many initiatives for the planned energetic transition, but its volatility and flammability require extensive safety measures to prevent leakages and explosions. Magnesium thin films have been investigated not only for H-2 storage but also as switchable mirrors, which drastically change their optical properties when hydrogenated. Due to their lower cost compared to other hydride-forming or plasmonic metals commonly used in optical sensing, Mg-based H-2 fiber sensors have the potential to be both affordable and effective for scalable deployment in industrial settings. To this end, multilayer thin-film structures with Mg and palladium as adsorption catalyst were deposited on single-mode fiber tips, and H-2 loading/unloading processes were tested in a controlled flow gas setup. In parallel, an optical interrogation system prototype was developed, enabling fast data acquisition of fiber-tip reflectivity across multiple sensing probes at a wavelength of 1550 nm. Preliminary testing suggests fast response times of a few seconds for significant drops in reflectivity, facilitating straightforward detection of H-2 leaks using thresholding methods. Planned future work includes performance comparison with simpler sensing structures, durability and contaminant testing, and response time optimization.

2025

Enhancement of Fiber-Optic Sensor Performance Through Hyperbolic Dispersion Engineering

Autores
Carvalho, JPM; Mendes, JP; Coelho, LCC; de Almeida, JMMM;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Optical fibers have been extensively applied in optical sensing platforms for their large bandwidth, stability, light weight and accessibility. This work presents a theoretical analysis of an optical fiber surface plasmon resonance system for refractometric sensing applications. The device consists of a multilayer hyperbolic metamaterial (HMM) composed of concentric Au/TiO2 alternate layers in optical fiber matrix. HMMs exhibit hyperbolic dispersion (HD) and the interaction of different plasmonic modes at each interface of the HMM is reported to enhance light-matter coupling, leading to an increased refractometric sensitivity. The HD and its effects on sensor performance are numerically investigated by effective medium theory (EMT) and backed by the exact transfer matrix method (TMM). The maximum sensor performance was attained for a configuration with 2 bilayers with 30 nm thickness for a metal fill fraction (rho) of 0.7, achieving a figure of merit (FOM) of 18.45. A direct comparison with a plasmonic Au optical fiber sensor returned an optimized FOM of 5.74, therefore achieving over a three-fold increase in sensor performance, assessing the potential of HMM as highly refractometric sensitive platforms.

  • 8
  • 8