Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jorge Miguel Mendes

2017

Path Planning for Automatic Recharging System for Steep-Slope Vineyard Robots

Autores
Santos, L; dos Santos, FN; Mendes, J; Ferraz, N; Lima, J; Morais, R; Costa, P;

Publicação
ROBOT 2017: Third Iberian Robotics Conference - Volume 1, Seville, Spain, November 22-24, 2017

Abstract

2016

Vine trunk detector for a reliable robot localization system

Autores
Mendes, J; dos Santos, FN; Ferraz, N; Couto, P; Morais, R;

Publicação
2016 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2016)

Abstract
Develop ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy got from Global Positioning Systems (GPS). For this context, a reliable localization system requires a high density of natural/artificial features and an accurate detector. This paper presents a novel visual detector for Vineyards Trunks and Masts (ViTruDe). The ViTruDe detector was developed considering the constrains of a cost-effective robot to carry-out crop monitoring tasks in steep slope vineyard environment. The obtained results with real data shows an accuracy higher than 95% for all tested configurations. The training and test data are made public for future research work. This approach is a contribution for an accurate and reliable localization system that is GPS-free.

2018

Distributed monitoring system for precision enology of the Tawny Port wine aging process

Autores
Morais, R; Peres, E; Boaventura Cunha, J; Mendes, J; Cosme, F; Nunes, FM;

Publicação
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Aging of Tawny Port wine is a multifactorial process critical for attaining the desired quality. Real time monitoring of important intrinsic and extrinsic factors that are known to affect the time and quality of the aging process are important to optimize and to manage the natural variability between wines aged in different long used wood barrels. For this study, a distributed monitoring system was installed in sixteen oak barrels, placed in two adjacent wineries - one of them with controlled temperature in the Douro Demarcated Region, Portugal. The monitoring process was performed using a RS-485 industrial network, which interconnects sensors that continuously measure wine temperature, pH, redox potential and wine's dissolved oxygen, as well as other sensors that measure parameters related to the barrels' environmental context, such as room temperature and relative humidity. This work presents the design, development and implementation of a remote distributed system to monitor such parameters, aiming to determine the existence of behaviour models for Port Tawny wine during aging in long-used oak barrels, depending on their storage history and to understand the evolution of wine pH, dissolved oxygen and redox potential in real winery conditions as well as their dependence on the wine's storage temperature. This approach is based on easy-to-use embedded systems, with the aim of giving a relevant contribution to other projects in the area of precision enology.

2018

Path planning for automatic recharging system for steep-slope vineyard robots

Autores
Santos, L; dos Santos, FN; Mendes, J; Ferraz, N; Lima, J; Morais, R; Costa, P;

Publicação
Advances in Intelligent Systems and Computing

Abstract
Develop cost-effective ground robots for crop monitoring in steep slope vineyards is a complex challenge. The terrain presents harsh conditions for mobile robots and most of the time there is no one available to give support to the robots. So, a fully autonomous steep-slope robot requires a robust automatic recharging system. This work proposes a multilevel system that monitors a vineyard robot autonomy, to plan off-line the trajectory to the nearest recharging point and dock the robot on that recharging point considering visual tags. The proposed system called VineRecharge was developed to be deployed into a cost-effective robot with low computational power. Besides, this paper benchmarks several visual tags and detectors and integrates the best one into the VineRecharge system. © Springer International Publishing AG 2018.

2018

Redundant robot localization system based in wireless sensor network

Autores
Reis, R; Mendes, J; dos Santos, FN; Morais, R; Ferraz, N; Santos, L; Sousa, A;

Publicação
2018 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018, Torres Vedras, Portugal, April 25-27, 2018

Abstract
Localization and Mapping of autonomous robots in an harsh and unstable environment such as a steep slope vineyard is a challenging research topic. Dead Reckoning systems can fail due to the harsh conditions of the terrain, and the Global Position System can be affected by noise or even be unavailable. Agriculture is moving towards precision agriculture, with advanced monitoring systems and wireless sensor networks. These systems and wireless sensors are installed in the crop field and can be considered relevant landmarks for robot localization. In this paper the distance accuracy provided by bluetooth based sensors is deeply studied and characterized. It is considered a multi antenna receiver bluetooth system and obtained the transfer functions (from Received Signal Strength Indication (RSSI) to distance estimation) for each set of antenna and sensors. The performance of this technology is compared against Time-of-flight based technologies (Pozyx). The obtained results show that the agricultural wireless sensors can be used as redundant artificial landmarks for localization purposes. Besides, the RSSI characterization allowed to improve the previous results of our Beacon Mapping Procedure (BMP) required for accurate and reliable localization systems. © 2018 IEEE.

2018

Path planning aware of soil compaction for steep slope vineyards

Autores
Santos, L; Ferraz, N; Neves Dos Santos, F; Mendes, J; Morais, R; Costa, P; Reis, R;

Publicação
18th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018

Abstract
The intensive use of agricultural machinery is promoting the soil compaction. The use of agricultural robots or autonomous machinery can intensify this problem, due its capacity to replicate the same trajectories. One of the possible strategies to minimize the effects of soil compaction is to control agricultural traffic instead of common random traffic. Since geo-referencing systems are present in almost all field operations it is possible to optimize trajectories to avoid to damage the crop and intensify the soil compaction. The controlled agricultural traffic on farms will not only increase production capacity, the incomes as well as the quality of the soil. In this work a novel approach based on A-star algorithm is proposed to reduce soil compaction in steep slope vineyards. © 2018 IEEE.

  • 1
  • 3