Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Orlando Frazão

2025

High-Birefringence and Quarter-Wave Plates at 1550 nm Using Azopolymers

Autores
Soares, B; Silva, S; Ribeiro, P; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Azobenzenes are a class of compounds which allow the writing and erasure of linear birefringence along any desired direction, through their ability to photoisomerize. This property enables applications requiring polarization control, which, despite extensive exploration in the visible spectrum, have yet to be fully capitalized in the infrared region. This study aims to systematically characterize the creation and relaxation of induced linear birefringence dynamics in azopolymers thin films for the 1550 nm region. Maximum birefringence values as high as 6.02 x 10(-2) were attained during the recording phase with a 445 nm pump laser, that stabilized at 5.40 x 10(-2) during the relaxation phase, achieved for a 2.4 mu m sample. In addition, a maximum phase shift of Delta Phi = 0.54 pi stabilizing at Delta Phi = 0.50 pi, was observed for a 9.7 mu m sample with a 532 nm writing laser. Accordingly, this shows the promising potential of azopolymers for many applications.

2026

Virtual Vernier Effect Harmonics for Enhanced Fabry-Perot Interferometer Sensing

Autores
Robalinho, P; Piaia, V; Lobo-Ribeiro, A; Silva, S; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
The present letter proposes the implementation of Vernier-effect harmonics through the virtualization of different reference cavities. A Fabry-Perot interferometer (FPI), actuated by a piezoelectric transducer (PZT), was employed as the sensing element. Subsequently, the sensitivity of the dynamic range was investigated for both the individual interferometer and the implementation of the Virtual Vernier effect. A sensitivity of (8 +/- 0.05)x10(-3) nm/nm was achieved for the single sensor measurement. Considering the implementation of the Vernier effect, the following sensitivities were obtained: (65.6 +/- 0.08)x10(-3) nm/nm for the fundamental, (132 +/- 1)x10-3 nm/nm for the first harmonic, and (192 +/- 1)x10(-3) nm/nm for the second harmonic. Furthermore, a maximum dynamic range of 11.25 mu m and a maximum resolution of 5 pm were achieved. This study highlights the advantages of simultaneously measuring both a single sensor cavity and a harmonic of the Virtual Vernier effect, in order to achieve large dynamic ranges along with high resolution.

2025

Displacement Sensing Based on Parasitic Cavity Referencing in Optical Circulators

Autores
Piaia, V; Robalinho, P; Rodrigues, A; Ribeiro, AL; Silva, S; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, we propose a method for utilizing the internal cavities of optical circulator devices-commonly referred to as parasitic cavities-as optical reference cavities. The method involves using an optical circulator operating at 1550 nm, illuminated by a light source at 1330 nm, thereby enhancing the amplitude of the interferometric signals generated by the internal optical cavities. The system was characterized by using both an Optical Spectrum Analyzer (OSA) and the Low-Coherence Interferometry (LCI) technique. Experimental results indicate that the Optical Path Difference (OPD) remains constant with varying aperture sizes, thereby confirming the feasibility of employing the optical circulator as a reference sensor. Finally, its performance as a reference sensor is demonstrated through its integration with an external cavity that functions as a displacement sensor.

  • 86
  • 86