2025
Autores
Capozzi, L; Ferreira, L; Gonçalves, T; Rebelo, A; Cardoso, JS; Sequeira, AF;
Publicação
Pattern Recognition and Image Analysis - 12th Iberian Conference, IbPRIA 2025, Coimbra, Portugal, June 30 - July 3, 2025, Proceedings, Part II
Abstract
The rapid advancement of wireless technologies, particularly Wi-Fi, has spurred significant research into indoor human activity detection across various domains (e.g., healthcare, security, and industry). This work explores the non-invasive and cost-effective Wi-Fi paradigm and the application of deep learning for human activity recognition using Wi-Fi signals. Focusing on the challenges in machine interpretability, motivated by the increase in data availability and computational power, this paper uses explainable artificial intelligence to understand the inner workings of transformer-based deep neural networks designed to estimate human pose (i.e., human skeleton key points) from Wi-Fi channel state information. Using different strategies to assess the most relevant sub-carriers (i.e., rollout attention and masking attention) for the model predictions, we evaluate the performance of the model when it uses a given number of sub-carriers as input, selected randomly or by ascending (high-attention) or descending (low-attention) order. We concluded that the models trained with fewer (but relevant) sub-carriers are competitive with the baseline (trained with all sub-carriers) but better in terms of computational efficiency (i.e., processing more data per second). © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.