Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jaime Cardoso

2025

ECG Biometrics

Autores
Pinto, JR; Cardoso, S;

Publicação
Encyclopedia of Cryptography, Security and Privacy, Third Edition

Abstract
[No abstract available]

2025

Information bottleneck with input sampling for attribution

Autores
Oliveira Coelho, BF; Cardoso, JS;

Publicação
Neurocomputing

Abstract
In order to facilitate the adoption of deep learning in areas where decisions are of critical importance, understanding the model's internal workings is paramount. Nevertheless, since most models are considered black boxes, this task is usually not trivial, especially when the user does not have access to the network's intermediate outputs. In this paper, we propose IBISA, a model-agnostic attribution method that reaches state-of-the-art performance by optimizing sampling masks using the Information Bottleneck Principle. Our method improves on the previously known RISE and IBA techniques by placing the bottleneck right after the image input without complex formulations to estimate the mutual information. The method also requires only twenty forward passes and ten backward passes through the network, which is significantly faster than RISE, which needs at least 4000 forward passes. We evaluated IBISA using a VGG-16 and a ResNET-50 model, showing that our method produces explanations comparable or superior to IBA, RISE, and Grad-CAM but much more efficiently. © 2025 The Authors

2025

Bridging Domain Gaps in Computational Pathology: A Comparative Study of Adaptation Strategies

Autores
Nunes, JD; Montezuma, D; Oliveira, D; Pereira, T; Zlobec, I; Pinto, IM; Cardoso, JS;

Publicação
SENSORS

Abstract
Due to the high variability in Hematoxylin and Eosin (H&E)-stained Whole Slide Images (WSIs), hidden stratification, and batch effects, generalizing beyond the training distribution is one of the main challenges in Deep Learning (DL) for Computational Pathology (CPath). But although DL depends on large volumes of diverse and annotated data, it is common to have a significant number of annotated samples from one or multiple source distributions, and another partially annotated or unlabeled dataset representing a target distribution for which we want to generalize, the so-called Domain Adaptation (DA). In this work, we focus on the task of generalizing from a single source distribution to a target domain. As it is still not clear which domain adaptation strategy is best suited for CPath, we evaluate three different DA strategies, namely FixMatch, CycleGAN, and a self-supervised feature extractor, and show that DA is still a challenge in CPath.

2019

Editorial

Autores
Carneiro, G; Manuel, J; Tavares, RS; Bradley, AP; Papa, JP; Nascimento, JC; Cardoso, JS; Lu, Z; Belagiannis, V;

Publicação
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization

Abstract

2024

A Disentangled Approach to Predict the Aesthetic Outcomes of Breast Cancer Treatment

Autores
Montenegro, H; Cardoso, MJ; Cardoso, JS;

Publicação
Computer Vision - ECCV 2024 Workshops - Milan, Italy, September 29-October 4, 2024, Proceedings, Part IX

Abstract
Breast cancer locoregional treatment can cause significant and long-lasting alterations to a patient’s body. As various surgical options may be available to a patient and considering the impact that the aesthetic outcome may have on the patient’s self-esteem, it is critical for the patient to be adequately informed of the possible outcomes of each treatment when deciding on the treatment plan. With the purpose of simulating how a patient may look like after treatment, we propose a deep generative model to transfer asymmetries caused by treatment from post-operative breast patients into pre-operative images, taking advantage of the inherent symmetry of breast images. Furthermore, we disentangle asymmetries related with the breast shape from the nipple within the latent space of the network, enabling higher control over the alterations to the breasts. Finally, we show the proposed model’s wide applicability in medical imaging, by applying it to generate counterfactual explanations for cardiomegaly and pleural effusion prediction in chest radiographs. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Neonatal EEG classification using a compact support separable kernel time-frequency distribution and attention-based CNN

Autores
Larbi, A; Abed, M; Cardoso, JS; Ouahabi, A;

Publicação
BIOMEDICAL SIGNAL PROCESSING AND CONTROL

Abstract
Neonatal seizures represent a critical medical issue that requires prompt diagnosis and treatment. Typically, at-risk newborns undergo a Magnetic Resonance Imaging (MRI) brain assessment followed by continuous seizure monitoring using multichannel EEG. Visual analysis of multichannel electroencephalogram (EEG) recordings remains the standard modality for seizure detection; however, it is limited by fatigue and delayed seizure identification. Advances in machine and deep learning have led to the development of powerful neonatal seizure detection algorithms that may help address these limitations. Nevertheless, their performance remains relatively low and often disregards the non-stationary attributes of EEG signals, especially when learned from weakly labeled EEG data. In this context, the present paper proposes a novel deep-learning approach for neonatal seizure detection. The method employs rigorous preprocessing to reduce noise and artifacts, along with a recently developed time-frequency distribution (TFD) derived from a separable compact support kernel to capture the fast spectral changes associated with neonatal seizures. The high-resolution TFD diagrams are then converted into RGB images and used as inputs to a pre-trained ResNet-18 model. This is followed by the training of an attention-based multiple-instance learning (MIL) mechanism. The purpose is to perform a spatial time-frequency analysis that can highlight which channels exhibit seizure activity, thereby reducing the time required for secondary evaluation by a doctor. Additionally, per-instance learning (PIL) is performed to further validate the robustness of our TFD and methodology. Tested on the Helsinki public dataset, the PIL model achieved an area under the curve (AUC) of 96.8%, while the MIL model attained an average AUC of 94.1%, surpassing similar attention-based methods.

  • 63
  • 65