2024
Autores
Martins, I; Matos, J; Gonçalves, T; Celi, LA; Ian Wong, AK; Cardoso, JS;
Publicação
Applications of Medical Artificial Intelligence - Third International Workshop, AMAI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings
Abstract
Algorithmic bias in healthcare mirrors existing data biases. However, the factors driving unfairness are not always known. Medical devices capture significant amounts of data but are prone to errors; for instance, pulse oximeters overestimate the arterial oxygen saturation of darker-skinned individuals, leading to worse outcomes. The impact of this bias in machine learning (ML) models remains unclear. This study addresses the technical challenges of quantifying the impact of medical device bias in downstream ML. Our experiments compare a “perfect world”, without pulse oximetry bias, using SaO2 (blood-gas), to the “actual world”, with biased measurements, using SpO2 (pulse oximetry). Under this counterfactual design, two models are trained with identical data, features, and settings, except for the method of measuring oxygen saturation: models using SaO2 are a “control” and models using SpO2 a “treatment”. The blood-gas oximetry linked dataset was a suitable test-bed, containing 163,396 nearly-simultaneous SpO2 - SaO2 paired measurements, aligned with a wide array of clinical features and outcomes. We studied three classification tasks: in-hospital mortality, respiratory SOFA score in the next 24 h, and SOFA score increase by two points. Models using SaO2 instead of SpO2 generally showed better performance. Patients with overestimation of O2 by pulse oximetry of = 3% had significant decreases in mortality prediction recall, from 0.63 to 0.59, P < 0.001. This mirrors clinical processes where biased pulse oximetry readings provide clinicians with false reassurance of patients’ oxygen levels. A similar degradation happened in ML models, with pulse oximetry biases leading to more false negatives in predicting adverse outcomes. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Autores
Cristino, R; Cruz, RPM; Cardoso, JS;
Publicação
CoRR
Abstract
2024
Autores
Gonçalves, T; Arias, DP; Willett, J; Hoebel, KV; Cleveland, MC; Ahmed, SR; Gerstner, ER; Cramer, JK; Cardoso, JS; Bridge, CP; Kim, AE;
Publicação
CoRR
Abstract
2025
Autores
Barbero-Gómez, J; Cruz, RPM; Cardoso, JS; Gutiérrez, PA; Hervás-Martínez, C;
Publicação
NEUROCOMPUTING
Abstract
The use of Convolutional Neural Network (CNN) models for image classification tasks has gained significant popularity. However, the lack of interpretability in CNN models poses challenges for debugging and validation. To address this issue, various explanation methods have been developed to provide insights into CNN models. This paper focuses on the validity of these explanation methods for ordinal regression tasks, where the classes have a predefined order relationship. Different modifications are proposed for two explanation methods to exploit the ordinal relationships between classes: Grad-CAM based on Ordinal Binary Decomposition (GradOBDCAM) and Ordinal Information Bottleneck Analysis (OIBA). The performance of these modified methods is compared to existing popular alternatives. Experimental results demonstrate that GradOBD-CAM outperforms other methods in terms of interpretability for three out of four datasets, while OIBA achieves superior performance compared to IBA.
2025
Autores
Cruz, RPM; Cristino, R; Cardoso, JS;
Publicação
IEEE ACCESS
Abstract
Semantic segmentation consists of predicting a semantic label for each image pixel. While existing deep learning approaches achieve high accuracy, they often overlook the ordinal relationships between classes, which can provide critical domain knowledge (e.g., the pupil lies within the iris, and lane markings are part of the road). This paper introduces novel methods for spatial ordinal segmentation that explicitly incorporate these inter-class dependencies. By treating each pixel as part of a structured image space rather than as an independent observation, we propose two regularization terms and a new metric to enforce ordinal consistency between neighboring pixels. Two loss regularization terms and one metric are proposed for structural ordinal segmentation, which penalizes predictions of non-ordinal adjacent classes. Five biomedical datasets and multiple configurations of autonomous driving datasets demonstrate the efficacy of the proposed methods. Our approach achieves improvements in ordinal metrics and enhances generalization, with up to a 15.7% relative increase in the Dice coefficient. Importantly, these benefits come without additional inference time costs. This work highlights the significance of spatial ordinal relationships in semantic segmentation and provides a foundation for further exploration in structured image representations.
2024
Autores
Gonçalves, T; Hedström, A; Pahud de Mortanges, A; Li, X; Müller, H; Cardoso, S; Reyes, M;
Publicação
Trustworthy Ai in Medical Imaging
Abstract
In the healthcare context, artificial intelligence (AI) has the potential to power decision support systems and help health professionals in their clinical decisions. However, given its complexity, AI is usually seen as a black box that receives data and outputs a prediction. This behavior may jeopardize the adoption of this technology by the healthcare community, which values the existence of explanations to justify a clinical decision. Besides, the developers must have a strategy to assess and audit these systems to ensure their reproducibility and quality in production. The field of interpretable artificial intelligence emerged to study how these algorithms work and clarify their behavior. This chapter reviews several interpretability of AI algorithms for medical imaging, discussing their functioning, limitations, benefits, applications, and evaluation strategies. The chapter concludes with considerations that might contribute to bringing these methods closer to the daily routine of healthcare professionals. © 2025 Elsevier Inc. All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.