Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jorge Silva

2018

End-to-End Ovarian Structures Segmentation

Autores
Wanderley, DS; Carvalho, CB; Domingues, A; Peixoto, C; Pignatelli, D; Beires, J; Silva, J; Campilho, A;

Publicação
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings

Abstract
The segmentation and characterization of the ovarian structures are important tasks in gynecological and reproductive medicine. Ultrasound imaging is typically used for the medical diagnosis within this field but the understanding of the images can be difficult due to their characteristics. Furthermore, the complexity of ultrasound data may lead to a heavy image processing, which makes the application of classical methods of computer vision difficult. This work presents the first supervised fully convolutional neural network (fCNN) for the automatic segmentation of ovarian structures in B-mode ultrasound images. Due to the small dataset available, only 57 images were used for training. In order to overcome this limitation, several regularization techniques were used and are discussed in this paper. The experiments show the ability of the fCNN to learn features to distinguish ovarian structures, achieving a Dice similarity coefficient (DSC) of 0.855 for the segmentation of the stroma and a DSC of 0.955 for the follicles. When compared with a semi-automatic commercial application for follicle segmentation, the proposed fCNN achieved an average improvement of 19%. © Springer Nature Switzerland AG 2019.

2019

Quantitative Assessment of Central Serous Chorioretinopathy in Angiographic Sequences of Retinal Images

Autores
Ferreira, CA; Penas, S; Silva, J; Mendonca, AM;

Publicação
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG)

Abstract
Central serous chorioretinopathy is a retinal disease in which there is a leak of fluid into the subretinal space resulting in mild to moderate loss of visual acuity. Sequences of images from a fluorescein angiography exam are most of the times used for analyzing these leaks. This work presents a diagnostic aid method to detect and characterize the progression of fluid area along the exam, in order to provide a second opinion and increase the focus and the speed of analysis of the ophthalmologists. The method is based on a comparative approach by image subtraction between the late and early frames. The obtained segmentation results are quite promising with an average Dice coefficient of 0.801 +/- 0.106 for the training set and 0.774 +/- 0.106 for the test set.

2019

Deep Learning Approaches for Gynaecological Ultrasound Image Segmentation: A Radio-Frequency vs B-mode Comparison

Autores
Carvalho, C; Marques, S; Peixoto, C; Pignatelli, D; Beires, J; Silva, J; Campilho, A;

Publicação
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II

Abstract
Ovarian cancer is one of the pathologies with the worst prognostic in adult women and it has a very difficult early diagnosis. Clinical evaluation of gynaecological ultrasound images is performed visually, and it is dependent on the experience of the medical doctor. Besides the dependency on the specialists, the malignancy of specific types of ovarian tumors cannot be asserted until their surgical removal. This work explores the use of ultrasound data for the segmentation of the ovary and the ovarian follicles, using two different convolutional neural networks, a fully connected residual network and a U-Net, with a binary and multi-class approach. Five different types of ultrasound data (from beam-formed radio-frequency to brightness mode) were used as input. The best performance was obtained using B-mode, for both ovary and follicles segmentation. No significant differences were found between the two convolutional neural networks. The use of the multi-class approach was beneficial as it provided the model information on the spatial relation between follicles and the ovary. This study demonstrates the suitability of combining convolutional neural networks with beam-formed radio-frequency data and with brightness mode data for segmentation of ovarian structures. Future steps involve the processing of pathological data and investigation of biomarkers of pathological ovaries.

2019

Segmentation of gynaecological ultrasound images using different U-Net based approaches

Autores
Marques, S; Carvalho, C; Peixoto, C; Pignatelli, D; Beires, J; Silva, J; Campilho, A;

Publicação
2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)

Abstract
Ovarian cancer is one of the most commonly occurring cancer in women. Transvaginal ultrasound is used as a screening test to detect the presence of tumors but, for specific types of ovarian tumors, malignancy can only be asserted through surgery. An automatic method to perform the detection and malignancy assessment of these tumours is thus necessary to prevent unnecessary oophorectomies. This work explores the U-Net's architecture and investigates the selection of different hyperparameters for the ovary and the ovarian follicles segmentation. The effect of applying different post-processing methods on beam-formed radio-frequency (BRF) data is also investigated. Results show that models trained only with BRF data have the worst performance. On the other hand, the combination of B-mode with BRF data performs better for ovary segmentation. As for the hyperparameter study, results show that the U-Net with 4 levels is the architecture with the worst performance. This shows that to achieve better performance in the segmentation of ovarian structures, it is important to select an architecture that takes into account the spatial context of the regions of interest. It is also possible to conclude that the method used to analyse BRF data should be designed to take advantage of the fine-resolution of BRF data.

2021

Virtual Reality Web Application for Automotive Data Visualization

Autores
Oliveira, T; da Silva, JML; da Silva, JA;

Publicação
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Road safety is crucial in the design of autonomous vehicles, so safety and performance tests must be carried out regularly. Visualization applications of data acquired in these tests are critical to helping the continuous progress of autonomous driving. Currently, there is an application that helps in visualizing these data through a web platform, called Kratos Visualization. This application was developed using the WebGL library, to help companies that carry out experiments with autonomous vehicles to visualize and validate the data that they collect. These data represent different sequences of autonomous driving experiences and can contain a lot of information about the vehicle and objects in the environment around it. The work that led to this paper aims to explore the visualization of these data with the help of virtual reality. To strengthen the visualization of autonomous driving data, an application was created named Kratos VR. Designed with the A-Frame framework to work in any browser, this application contains the same functionalities of Kratos Visualization and new virtual reality features. Performance tests were carried out to evaluate the application. These tests allowed us to conclude that virtual reality can be successfully used to effectively visualize Advanced Driving Assist Systems (ADAS) and Autonomous Driving (AD) data and that the developed application provides a solid basis for future virtual reality applications in this field.

2021

Ovarian Structures Detection using Convolutional Neural Networks

Autores
Wanderley, DS; Ferreira, CA; Campilho, A; Silva, JA;

Publicação
CENTERIS 2021 - International Conference on ENTERprise Information Systems / ProjMAN 2021 - International Conference on Project MANagement / HCist 2021 - International Conference on Health and Social Care Information Systems and Technologies 2021, Braga, Portugal

Abstract
The detection of ovarian structures from ultrasound images is an important task in gynecological and reproductive medicine. An automatic detection system of ovarian structures can work as a second opinion for less experienced physicians or complex ultrasound interpretations. This work presents a study of three popular CNN-based object detectors applied to the detection of healthy ovarian structures, namely ovary and follicles, in B-mode ultrasound images. The Faster R-CNN presented the best results, with a precision of 95.5% and a recall of 94.7% for both classes, being able to detect all the ovaries correctly. The RetinaNet showed competitive results, exceeding 90% of precision and recall. Despite being very fast and suitable for real-time applications, YOLOv3 was ineffective in detecting ovaries and had the worst results detecting follicles. We also compare CNN results with classical computer vision methods presented in the ovarian follicle detection literature.

  • 2
  • 5