2006
Autores
Leite, AS; Rocha, AP; Silva, ME; Costa, O;
Publicação
BIOMEDIZINISCHE TECHNIK
Abstract
Long-term heart rate variability (HRV) series can be described by time-variant autoregressive modelling. HRV recordings show dependence between distant observations that is not negligible, suggesting the existence of long-range correlations. In this work, selective adaptive segmentation combined with fractionally integrated autoregressive moving-average models is used to capture long memory in HRV recordings. This approach leads to an improved description of the low- and high-frequency components in HRV spectral analysis. Moreover, it is found that in the 24-h recording of a case report, the long-memory parameter presents a circadian variation, with different regimes for day and night periods.
2007
Autores
Leite, A; Rocha, AP; Silva, ME; Gouveia, S; Carvalho, J; Costa, O;
Publicação
COMPUTERS IN CARDIOLOGY 2007, VOL 34
Abstract
Heart rate variability (HRV) data display non-stationary characteristics and exhibit long-range correlation (memory). Detrended fluctuation analysis (DFA) has become a widely-used technique for long memory estimation in non-stationary HRV data. Recently, we have proposed an alternative approach based on fractional integrated autoregressive moving average (ARFIMA) models. ARFIMA models, combined with selective adaptive segmentation may be used to capture and remove long-range correlation, leading to an improved description and interpretation of tire components in 24 hour HRV recordings. In this work estimation of long memory by DFA and selective adaptive ARFIMA modelling is carried out in 24 hour HRV recordings of 17 healthy subjects of two age groups. The two methods give similar information on long-range global characteristics. However ARFIMA modelling is advantageous, allowing the description of long-range correlation in reduced length segments.
2002
Autores
Boardman, A; Schlindwein, FS; Rocha, AP; Leite, A;
Publicação
PHYSIOLOGICAL MEASUREMENT
Abstract
Heart rate variability (HRV) has been used as a non-invasive marker of the activity of the autonomic nervous system and its spectrum analysis gives a measure of the sympatho-vagal balance. If short segments are used in an attempt to improve temporal resolution, autoregressive spectral estimation, where the model order must be estimated, is preferred. In this paper we compare four criteria for the estimation of the 'optimum' model order for an autoregressive (AR) process applied to short segments of tachograms used for HRV analysis. The criteria used were Akaike's final prediction error. Akaike's information criterion, Parzen's criterion of autoregressive transfer function and Rissanen's minimum description length method, and they were first applied to tachograms to verify (i) the range and distribution of model orders obtained and (ii) if the different techniques suggest the same model order for the same frames. The four techniques were then tested using a true AR process of known order p = 6: this verified the ability of the criteria to estimate the correct order of a true AR process and the effect. on the spectrum. of choosing a wrong model order was also investigated. It was found that all the four criteria underestimate the true AR orders specifying a fixed model order was then looked at and it is recommended that an AR order not less than p = 16, should be used for spectral analysis of short segments of tachograms.
2009
Autores
Leite, A; Rocha, AP; Silva, ME;
Publicação
CINC: 2009 36TH ANNUAL COMPUTERS IN CARDIOLOGY CONFERENCE
Abstract
Heart rate variability (HRV) data display nonstationary characteristics, exhibit long-range correlations (memory) and instantaneous variability (volatility). Recently, we have proposed fractionally integrated autoregressive moving average (ARFIMA) models for a parametric alternative to the widely-used technique detrended fluctuation analysis, for long memory estimation in HRV. Usually, the volatility in HRV studies is assessed by recursive least squares. In this work, we propose an alternative approach based on ARFIMA models with generalized autoregressive conditionally heteroscedastic (GARCH) innovations. ARFIMA-GARCH models, combined with selective adaptive segmentation, may be used to capture and remove long-range correlation and estimate the conditional volatility in 24 hour HRV recordings. The ARFIMA-GARCH approach is applied to 24 hour HRV recordings from the Noltisalis database allowing to discriminate between the different groups.
2023
Autores
Cruz, C; Leite, A; Pires, EJS; Pereira, LT;
Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
Myocardial infarction, known as heart attack, is one of the leading causes of world death. It occurs when blood heart flow is interrupted by part of coronary artery occlusion, causing the ischemic episode to last longer, creating a change in the patient’s ECG. In this work, a method was developed for predicting patients with MI through Frank 3-lead ECG extracted from Physionet’s PTB ECG Diagnostic Database and using instantaneous frequency and spectral entropy to extract features. Two neural networks were applied: Long Short-Term Memory and Bi-Long Short-Term Memory, obtaining a better result with the first one, with an accuracy of 78%. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2022
Autores
Barbosa, D; Solteiro Pires, EJ; Leite, A; Moura Oliveira, PBd;
Publicação
Wireless Mobile Communication and Healthcare - 11th EAI International Conference, MobiHealth 2022, Virtual Event, November 30 - December 2, 2022, Proceedings
Abstract
Ventricular tachyarrhythmia (VTA), mainly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the major causes of sudden cardiac death in the world. This work uses deep learning, more precisely, LSTM and biLSTM networks to predict VTA events. The Spontaneous Ventricular Tachyarrhythmia Database from PhysioNET was chosen, which contains 78 patients, 135 VTA signals, and 135 control rhythms. After the pre-processing of these signals and feature extraction, the classifiers were able to predict whether a patient was going to suffer a VTA event or not. A better result using a biLSTM was obtained, with a 5-fold-cross-validation, reaching an accuracy of 96.30%, 94.07% of precision, 98.45% of sensibility, and 96.17% of F1-Score. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.