Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Marco Linhares Couto

2020

SPELLing out energy leaks: Aiding developers locate energy inefficient code

Autores
Pereira, R; Carcao, T; Couto, M; Cunha, J; Fernandes, JP; Saraiva, J;

Publicação
JOURNAL OF SYSTEMS AND SOFTWARE

Abstract
Although hardware is generally seen as the main culprit for a computer's energy usage, software too has a tremendous impact on the energy spent. Unfortunately, there is still not enough support for software developers so they can make their code more energy-aware. This paper proposes a technique to detect energy inefficient fragments in the source code of a software system. Test cases are executed to obtain energy consumption measurements, and a statistical method, based on spectrum-based fault localization, is introduced to relate energy consumption to the source code. The result of our technique is an energy ranking of source code fragments pointing developers to possible energy leaks in their code. This technique was implemented in the SPELL toolkit. Finally, in order to evaluate our technique, we conducted an empirical study where we asked participants to optimize the energy efficiency of a software system using our tool, while also having two other groups using no tool assistance and a profiler, respectively. We showed statistical evidence that developers using our technique were able to improve the energy efficiency by 43% on average, and even out performing a profiler for energy optimization.

2020

Energy Refactorings for Android in the Large and in the Wild

Autores
Couto, M; Saraiva, J; Fernandes, JP;

Publicação
PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20)

Abstract
Improving the energy efficiency of mobile applications is a timely goal, as it can contribute to increase a device's usage time, which most often is powered by batteries. Recent studies have provided empirical evidence that refactoring energy-greedy code patterns can in fact reduce the energy consumed by an application. These studies, however, tested the impact of refactoring patterns individually, often locally (e.g., by measuring method-level gains) and using a small set of applications. We studied the application-level impact of refactorings, comparing individual refactorings, among themselves and against the combinations on which they appear. We use scenarios that simulate realistic application usage on a large-scale repository of Android applications. To fully automate the detection and refactoring procedure, as well as the execution of test cases, we developed a publicly available tool called Chimera. Our findings include statistical evidence that i) individual refactorings produce consistent gains, but with different impacts, ii) combining as much refactorings as possible most often, but not always, increases energy savings when compared to individual refactorings, and iii) a few combinations are harmful to energy savings, as they can actually produce more losses than gains. We prepared a set of guidelines for developers to follow, aiding them on deciding how to refactor and consistently reduce energy.

2020

Greenspecting Android virtual keyboards

Autores
Rua, R; Fraga, T; Couto, M; Saraiva, J;

Publicação
MOBILESoft '20: IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems, Seoul, Republic of Korea, July 13-15, 2020

Abstract
During this still increasing mobile devices proliferation age, much of human-computer interaction involves text input, and the task of typing text is provided via virtual keyboards. In a mobile setting, energy consumption is a key concern for both hardware manufacturers and software developers. Virtual keyboards are software applications, and thus, inefficient applications have a negative impact on the overall energy consumption of the underlying device. Energy consumption analysis and optimization of mobile software is a recent and active area of research. Surprisingly, there is no study analyzing the energy efficiency of the most used software keyboards and evaluating the performance advantage of its features. In this paper, we studied the energy performance of five of the most used virtual keyboards in the Android ecosystem. We measure and analyze the energy consumption in different keyboard scenarios, namely with or without using word prediction. This work presents the results of two studies: one where we instructed the keyboards to simulate the writing of a predefined input text, and another where we performed an empirical study with real users writing the same text. Our studies show that there exist relevant performance differences among the most used keyboards of the considered ecosystem, and it is possible to save nearly 18% of energy by replacing the most used keyboard in Android by the most efficient one. We also showed that is possible to save both energy and time by disabling keyboard intrinsic features and that the use of word suggestions not always compensate for energy and time. © 2020 ACM.

2020

E-Debitum: Managing Software Energy Debt

Autores
Maia, D; Couto, M; Saraiva, J; Pereira, R;

Publicação
2020 35TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING WORKSHOPS (ASEW 2020)

Abstract
This paper extends previous work on the concept of a new software energy metric: Energy Debt. This metric is a reflection on the implied cost, in terms of energy consumption over time, of choosing an energy flawed software implementation over a more robust and efficient, yet time consuming, approach. This paper presents the implementation a SonarQube tool called E-Debitum which calculates the energy debt of Android applications throughout their versions. This plugin uses a robust, well defined, and extendable smell catalog based on current green software literature, with each smell defining the potential energy savings. To conclude, an experimental validation of E-Debitum was executed on 3 popular Android applications with various releases, showing how their energy debt fluctuated throughout releases.

2020

On energy debt: managing consumption on evolving software

Autores
Couto, M; Maia, D; Saraiva, J; Pereira, R;

Publicação
TechDebt '20: International Conference on Technical Debt, Seoul, Republic of Korea, June 28-30, 2020

Abstract
This paper introduces the concept of energy debt: a new metric, reflecting the implied cost in terms of energy consumption over time, of choosing a flawed implementation of a software system rather than a more robust, yet possibly time consuming, approach. A flawed implementation is considered to contain code smells, known to have a negative influence on the energy consumption. Similar to technical debt, if energy debt is not properly addressed, it can accumulate an energy "interest". This interest will keep increasing as new versions of the software are released, and eventually reach a point where the interest will be higher than the initial energy debt. Addressing the issues/smells at such a point can remove energy debt, at the cost of having already consumed a significant amount of energy which can translate into high costs. We present all underlying concepts of energy debt, bridging the connection with the existing concept of technical debt and show how to compute the energy debt through a motivational example. © 2020 ACM.

  • 3
  • 3