Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Jorge

2023

Simulation and Characterization of Magneto-Plasmonic Properties of Ag/Fe Nanostructure in Optical Fibers

Autores
Carvalho, PM; Coelho, CC; Jorge, PAS; de Almeida, JMMM;

Publicação
Proceedings - 28th International Conference on Optical Fiber Sensors, OFS 2023

Abstract
Thin films of Ag/Fe were deposited on the core of multimode optical fibers. The deposited film shows sensitivity to both refractive index and MF changes. Simulation work based on TMM formalism confirms experimental response. © Optica Publishing Group 2023, © 2023 The Author(s)

2024

Applications of electrochemical impedance spectroscopy in disease diagnosis-A review

Autores
Ribeiro, JA; Jorge, PAS;

Publicação
SENSORS AND ACTUATORS REPORTS

Abstract
Electrochemical impedance spectroscopy (EIS) is a reliable technique for gathering information about electrochemical process occurring at the electrode surface and investigating properties of materials. Furthermore, EIS technique can be a very versatile and valuable tool in analytical assays for detection and quantification of several chemically and biologically relevant (bio)molecules. The first part of this Review (Introduction) provides brief insights into (i) theoretical aspects of EIS, (ii) the instrumentation required to perform the EIS studies and (iii) the most relevant representations of impedance experimental data (such as Nyquist and Bode plots). In the end of this section, (iv) theoretical aspects regarding the fitting of the Randles circuit to experimental data are addressed, not only to obtain information about electrochemical processes but also to illustrate its utility for analytical purposes. The second part of the Review (Impedimetric Detection of Disease Biomarkers) focuses on the applications of EIS in the biomedical field, particularly as analytical technique in electrochemical sensors and biosensors for screening disease biomarkers. In the last section (Conclusions and Perspectives), we discuss main achievements of EIS technique in analytical assays and provide some perspectives, challenges and future applications in the biomedical field.

2025

Beyond Human Vision: Unlocking the Potential of Augmented Reality for Spectral Imaging

Autores
Cavaco, R; Lopes, T; Capela, D; Guimaraes, D; Jorge, PAS; Silva, NA;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Spectral imaging is a broad term that refers to the use of a spectroscopy technique to analyze sample surfaces, collecting and representing spatially referenced signals. Depending on the technique utilized, it allows the user to reveal features and properties of objects that are invisible to the human eye, such as chemical or molecular composition. However, the interpretability and interaction with the results are often limited to screen visualization of two-dimensional representations. To surpass such limitations, augmented reality emerges as a promising technology, assisted by recent developments in the integration of spectral imaging datasets onto three-dimensional models. Building on this context, this work explores the integration of spectral imaging with augmented reality, aiming to create an immersive toolset to increase the interpretability and interactivity of the results of spectral imaging analysis. The procedure follows a two-step approach, starting from the integration of spectral maps onto a three-dimensional models, and proceeding with the development of an interactive interface to allow immersive visualization and interaction with the results. The approach and tool developed present the opportunity for a user-centric extension of reality, enabling more intuitive and comprehensive analyses with the potential to drive advancements in various research domains.

  • 46
  • 46