2025
Autores
Rocco, CD; Guimaraes, L; Almada Lobo, B; Morabito, R;
Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
This paper presents an optimisation approach based on mixed-integer programming for tactical planning decisions within fresh fruit processing industries. It applies to fruits such as oranges, tomatoes, guavas and others, where diluted fruit juice needs to be concentrated in evaporators to produce semi-finished or finished products. It considers agricultural and industrial activities, integrating them to address complex and interconnected decisions. Agricultural tasks include planting, harvesting, and transporting fruits from fields to processing plants, while industrial activities involve the production, inventory, and transportation of semi-finished and final products. This approach accommodates multiple agricultural regions, fruit varieties, processing plants, and products, operating on a weekly basis within a one-year planning horizon. It offers a detailed solution for harvesting, the fruit juice concentration process, inventory management for the products produced, and transportation of raw materials and products among processing plants. Production of semi-finished products is modelled using the Proportional Lot-Sizing and Scheduling Problem and the production of finished products is modelled adopting a blending lot-sizing problem. The results were validated through computational experiments using a dataset from a company that processes tomatoes and guavas. Scenario analyses were conducted to evaluate the solution's consistency and real-world applicability. The findings indicate that the approach can support decision making in practice, highlighting its potential as a valuable managerial, analytical, and optimisation tool for some agri-food industries. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.