2025
Autores
Alves, GA; Tavares, R; Amorim, P; Camargo, VCB;
Publicação
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.