Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Barroso

2025

Beyond algorithms: Artificial intelligence driven talent identification with human insight

Autores
França, TJF; Sao Mamede, JHP; Barroso, JMP; dos Santos, VMPD;

Publicação
INTELLIGENT SYSTEMS WITH APPLICATIONS

Abstract
The rapid evolution of Artificial Intelligence (AI) is reshaping Human Resource Management (HRM), with growing interest in its role in talent identification. While AI has demonstrated effectiveness in analysing structured data, its limitations in assessing qualitative attributes such as creativity, adaptability, and emotional intelligence remain underexplored. This study addresses these gaps through an exploratory mixed-methods design, combining a global survey (n = 240) with semi-structured interviews of HR professionals. Quantitative analysis highlights patterns of association between key competencies, while qualitative findings provide contextual insights into perceptions of fairness, bias, and cultural resistance. The results suggest that AI can complement, but not replace, human judgement, supporting a Hybrid Evaluative Model that integrates algorithmic efficiency with human interpretation. The study contributes rare empirical evidence to a nascent field, highlights the ethical imperatives of bias mitigation and transparency, and underscores the importance of cultural context (collectivist versus individualist orientations) in shaping the acceptance and effectiveness of AI-enabled HR practices. These findings offer practical guidance for organisations and advance theory-building at the intersection of AI and HRM.

2026

NonVisual Pong: Enhancing Digital Accessibility Through Audio and Haptic Gaming for the Visually Impaired

Autores
Rocha, TDJVD; Nunes, RR; Barroso, JMP;

Publicação
Lecture Notes in Networks and Systems

Abstract
The video game industry has grown to become one of the largest in the market, surpassing even the film industry over a decade ago (Statista in Video game industry revenue worldwide 2000–2020). However, the development of games designed with visually impaired players in mind is still almost non-existent when compared to the sheer number of games released yearly. NonVisual Pong is our approach to addressing this challenge, providing blind players with a way to engage in competitive fun through gaming. We took the original Pong game from 1972 and fully adapted it to be played using only a controller—no visual display required. Following the development process, we tested our implementation with experts, discovering that, overall, our game was easy to pick up, required no overly complex setup, and successfully delivered the intended experience. Players enjoyed a balanced challenge and immersion, facilitated by audio cues and the controller’s vibrations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2025

Performance of Advanced Rider Assistance Systems in Varying Weather Conditions

Autores
Ullah, Z; da Silva, JAC; Nunes, RR; Reis, A; Filipe, V; Barroso, J; Pires, EJS;

Publicação
Vehicles

Abstract
Advanced rider assistance systems (ARAS) play a crucial role in enhancing motorcycle safety through features such as collision avoidance, blind-spot detection, and adaptive cruise control, which rely heavily on sensors like radar, cameras, and LiDAR. However, their performance is often compromised under adverse weather conditions, leading to sensor interference, reduced visibility, and inconsistent reliability. This study evaluates the effectiveness and limitations of ARAS technologies in rain, fog, and snow, focusing on how sensor performance, algorithms, techniques, and dataset suitability influence system reliability. A thematic analysis was conducted, selecting studies focused on ARAS in adverse weather conditions based on specific selection criteria. The analysis shows that while ARAS offers substantial safety benefits, its accuracy declines in challenging environments. Existing datasets, algorithms, and techniques were reviewed to identify the most effective options for ARAS applications. However, more comprehensive weather-resilient datasets and adaptive multi-sensor fusion approaches are still needed. Advancing in these areas will be critical to improving the robustness of ARAS and ensuring safer riding experiences across diverse environmental conditions.

  • 45
  • 45