Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Nuno Miguel Paulino

2024

CONVERGE: A Vision-Radio Research Infrastructure Towards 6G and Beyond

Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;

Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024

Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.

2025

Human Activity Recognition with a Reconfigurable Intelligent Surface for Wi-Fi 6E

Autores
Paulino, N; Oliveira, M; Ribeiro, FM; Outeiro, L; Pessoa, LM;

Publicação
Joint European Conference on Networks and Communications & 6G Summit, EuCNC/6G Summit 2025, Poznan, Poland, June 3-6, 2025

Abstract
Human Activity Recognition (HAR) is the identification and classification of static and dynamic human activities, which find applicability in domains like healthcare, entertainment, security, and cyber-physical systems. Traditional HAR approaches rely on wearable sensors, vision-based systems, or ambient sensing, each with inherent limitations such as privacy concerns or restricted sensing conditions. Instead, Radio Frequency (RF)-based HAR relies on the interaction of RF signals with people to infer activities. Reconfigurable Intelligent Surfaces (RISs) are significant for this use-case by allowing dynamic control over the wireless environment, enhancing the information extracted from RF signals. We present an Hand Gesture Recognition (HGR) approach using our own 6.5 GHz RIS design, which we use to gather a dataset for HGR classification for three different hand gestures. By employing two Convolutional Neural Networks (CNNs) models trained on data gathered under random and optimized RIS configuration sequences, we achieved classification accuracies exceeding 90%. © 2025 IEEE.

2025

Design and Implementation of Scalable 6.5 GHz Reconfigurable Intelligent Surface for Wi-Fi 6E

Autores
Paulino, N; Ribeiro, FM; Outeiro, L; Lopes, PA; Inacio, S; Pessoa, LM;

Publicação
2025 19TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP

Abstract
Wi-Fi 6E will enable dense communications with low latency and high throughput, meeting the demands of ever growing network traffic and supporting emergent services such as ultra HD or multi-video streaming, and augmented or virtual reality. However, the 6GHz band suffers from higher path loss and signal attenuation, and poor performance in NLoS conditions. Reconfigurable Intelligent Surfaces (RISs) can address these challenges by providing low-cost directional communications with increased spectral and energy efficiency. However, RIS designs for the WiFi-6E range are under-explored in literature. We present the implementation of an 8x8 RIS tuned for 6.5GHz designed for scalability. We characterize the response of the unit cell, and evaluate the RIS in an anechoic chamber, measuring the far field radiation patterns for several digital beamsteering configurations in a horizontal plane, demonstrating effective signal steering.

  • 7
  • 7