Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2025

Data Science: Foundations and Applications - 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, NSW, Australia, June 10-13, 2025, Proceedings, Part VI

Autores
Wu, X; Spiliopoulou, M; Wang, C; Kumar, V; Cao, L; Zhou, X; Pang, G; Gama, J;

Publicação
PAKDD (6)

Abstract

2025

Salvador Urban Network Transportation (SUNT): A Landmark Spatiotemporal Dataset for Public Transportation

Autores
Ferreira, MV; Souza, M; Rios, TN; Fernandes, IFC; Nery, J; Gama, J; Bifet, A; Rios, RA;

Publicação
SCIENTIFIC DATA

Abstract
Efficient public transportation management is essential for the development of large urban centers, providing several benefits such as comprehensive coverage of population mobility, reduction of transport costs, better control of traffic congestion, and significant reduction of environmental impact limiting gas emissions and pollution. Realizing these benefits requires a deeply understanding the population and transit patterns and the adoption of approaches to model multiple relations and characteristics efficiently. This work addresses these challenges by providing a novel dataset that includes various public transportation components from three different systems: regular buses, subway, and BRT (Bus Rapid Transit). Our dataset comprises daily information from about 700,000 passengers in Salvador, one of Brazil's largest cities, and local public transportation data with approximately 2,000 vehicles operating across nearly 400 lines, connecting almost 3,000 stops and stations. With data collected from March 2024 to March 2025 at a frequency lower than one minute, SUNT stands as one of the largest, most comprehensive, and openly available urban datasets in the literature.

2025

Interventions based on biofeedback systems to improve workers’ psychological well-being, mental health and safety: a systematic literature review (Preprint)

Autores
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;

Publicação

Abstract
BACKGROUND

In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being.

OBJECTIVE

To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions.

METHODS

A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation.

RESULTS

The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues.

CONCLUSIONS

Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.

2025

Discovering user groups of active modes of transport in urban centers using clustering methods

Autores
Felicio, S; Hora, J; Ferreira, MC; Sobral, T; Camacho, R; Galvao, T;

Publicação
JOURNAL OF TRANSPORT & HEALTH

Abstract
Introduction: Urban centers face increasing congestion and pollution due to population growth driven by jobs, education, and entertainment. Promoting active modes like walking and cycling offers healthier and less polluting alternatives. Understanding perceptions of comfort (green areas, commercial areas, crowd density, noise, thermal sensation, air quality, allergenics), safety and security (street illumination, traffic volume, surveillance, visual appearance, and speed limits) are crucial for encouraging active modes adoption. This study categorizes user groups based on these indicators, supporting policymakers in the development of targeted strategies. Methods: We developed a questionnaire to support our empirical study and collected 653 responses. We have analyzed the data using clustering methods such as Affinity Propagation, BIRCH, Bisecting K-means, HAC, K-means, Mini-Batch K-means, and Spectral clustering. The best performing method (K-means) was used to identify the user groups while a random forest model evaluated the relative importance of indicators for each group. Results: The study identified five user groups based on urban mobility indicators for safety and security, comfort, and distance and time. Conclusions: These groups, distinguished by sociodemographic features, include: Street Aesthetes (young men valuing visual appeal), Safety Seekers (employed men prioritizing speed limits), Working Guardians (employed men focused on surveillance and green spaces), Urban Explorers (young women valuing air quality and low traffic), and Comfort Connoisseurs (employed women prioritizing noise reduction and aesthetics).

2025

KDBI special issue: Explainability feature selection framework application for LSTM multivariate time-series forecast self optimization

Autores
Rodrigues, EM; Baghoussi, Y; Mendes Moreira, J;

Publicação
EXPERT SYSTEMS

Abstract
Deep learning models are widely used in multivariate time series forecasting, yet, they have high computational costs. One way to reduce this cost is by reducing data dimensionality, which involves removing unimportant or low importance information with the proper method. This work presents a study on an explainability feature selection framework composed of four methods (IMV-LSTM Tensor, LIME-LSTM, Average SHAP-LSTM, and Instance SHAP-LSTM) aimed at using the LSTM black-box model complexity to its favour, with the end goal of improving the error metrics and reducing the computational cost on a forecast task. To test the framework, three datasets with a total of 101 multivariate time series were used, with the explainability methods outperforming the baseline methods in most of the data, be it in error metrics or computation time for the LSTM model training.

2025

Sampling approaches to reduce very frequent seasonal time series

Autores
Baldo, A; Ferreira, PJS; Mendes Moreira, J;

Publicação
EXPERT SYSTEMS

Abstract
With technological advancements, much data is being captured by sensors, smartphones, wearable devices, and so forth. These vast datasets are stored in data centres and utilized to forge data-driven models for the condition monitoring of infrastructures and systems through future data mining tasks. However, these datasets often surpass the processing capabilities of traditional information systems and methodologies due to their significant size. Additionally, not all samples within these datasets contribute valuable information during the model training phase, leading to inefficiencies. The processing and training of Machine Learning algorithms become time-consuming, and storing all the data demands excessive space, contributing to the Big Data challenge. In this paper, we propose two novel techniques to reduce large time-series datasets into more compact versions without undermining the predictive performance of the resulting models. These methods also aim to decrease the time required for training the models and the storage space needed for the condensed datasets. We evaluated our techniques on five public datasets, employing three Machine Learning algorithms: Holt-Winters, SARIMA, and LSTM. The outcomes indicate that for most of the datasets examined, our techniques maintain, and in several instances enhance, the forecasting accuracy of the models. Moreover, we significantly reduced the time required to train the Machine Learning algorithms employed.

  • 9
  • 504