Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2025

Interventions based on biofeedback systems to improve workers’ psychological well-being, mental health and safety: a systematic literature review (Preprint)

Autores
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;

Publicação

Abstract
BACKGROUND

In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being.

OBJECTIVE

To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions.

METHODS

A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation.

RESULTS

The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues.

CONCLUSIONS

Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.

2025

Discovering user groups of active modes of transport in urban centers using clustering methods

Autores
Felicio, S; Hora, J; Ferreira, MC; Sobral, T; Camacho, R; Galvao, T;

Publicação
JOURNAL OF TRANSPORT & HEALTH

Abstract
Introduction: Urban centers face increasing congestion and pollution due to population growth driven by jobs, education, and entertainment. Promoting active modes like walking and cycling offers healthier and less polluting alternatives. Understanding perceptions of comfort (green areas, commercial areas, crowd density, noise, thermal sensation, air quality, allergenics), safety and security (street illumination, traffic volume, surveillance, visual appearance, and speed limits) are crucial for encouraging active modes adoption. This study categorizes user groups based on these indicators, supporting policymakers in the development of targeted strategies. Methods: We developed a questionnaire to support our empirical study and collected 653 responses. We have analyzed the data using clustering methods such as Affinity Propagation, BIRCH, Bisecting K-means, HAC, K-means, Mini-Batch K-means, and Spectral clustering. The best performing method (K-means) was used to identify the user groups while a random forest model evaluated the relative importance of indicators for each group. Results: The study identified five user groups based on urban mobility indicators for safety and security, comfort, and distance and time. Conclusions: These groups, distinguished by sociodemographic features, include: Street Aesthetes (young men valuing visual appeal), Safety Seekers (employed men prioritizing speed limits), Working Guardians (employed men focused on surveillance and green spaces), Urban Explorers (young women valuing air quality and low traffic), and Comfort Connoisseurs (employed women prioritizing noise reduction and aesthetics).

2025

KDBI special issue: Explainability feature selection framework application for LSTM multivariate time-series forecast self optimization

Autores
Rodrigues, EM; Baghoussi, Y; Mendes Moreira, J;

Publicação
EXPERT SYSTEMS

Abstract
Deep learning models are widely used in multivariate time series forecasting, yet, they have high computational costs. One way to reduce this cost is by reducing data dimensionality, which involves removing unimportant or low importance information with the proper method. This work presents a study on an explainability feature selection framework composed of four methods (IMV-LSTM Tensor, LIME-LSTM, Average SHAP-LSTM, and Instance SHAP-LSTM) aimed at using the LSTM black-box model complexity to its favour, with the end goal of improving the error metrics and reducing the computational cost on a forecast task. To test the framework, three datasets with a total of 101 multivariate time series were used, with the explainability methods outperforming the baseline methods in most of the data, be it in error metrics or computation time for the LSTM model training.

2025

Sampling approaches to reduce very frequent seasonal time series

Autores
Baldo, A; Ferreira, PJS; Mendes Moreira, J;

Publicação
EXPERT SYSTEMS

Abstract
With technological advancements, much data is being captured by sensors, smartphones, wearable devices, and so forth. These vast datasets are stored in data centres and utilized to forge data-driven models for the condition monitoring of infrastructures and systems through future data mining tasks. However, these datasets often surpass the processing capabilities of traditional information systems and methodologies due to their significant size. Additionally, not all samples within these datasets contribute valuable information during the model training phase, leading to inefficiencies. The processing and training of Machine Learning algorithms become time-consuming, and storing all the data demands excessive space, contributing to the Big Data challenge. In this paper, we propose two novel techniques to reduce large time-series datasets into more compact versions without undermining the predictive performance of the resulting models. These methods also aim to decrease the time required for training the models and the storage space needed for the condensed datasets. We evaluated our techniques on five public datasets, employing three Machine Learning algorithms: Holt-Winters, SARIMA, and LSTM. The outcomes indicate that for most of the datasets examined, our techniques maintain, and in several instances enhance, the forecasting accuracy of the models. Moreover, we significantly reduced the time required to train the Machine Learning algorithms employed.

2025

Spatio-Temporal Predictive Modeling Techniques for Different Domains: a Survey

Autores
Kumar, R; Bhanu, M; Mendes-moreira, J; Chandra, J;

Publicação
ACM COMPUTING SURVEYS

Abstract
Spatio-temporal prediction tasks play a crucial role in facilitating informed decision-making through anticipatory insights. By accurately predicting future outcomes, the ability to strategize, preemptively address risks, and minimize their potential impact is enhanced. The precision in forecasting spatial and temporal patterns holds significant potential for optimizing resource allocation, land utilization, and infrastructure development. While existing review and survey papers predominantly focus on specific forecasting domains such as intelligent transportation, urban planning, pandemics, disease prediction, climate and weather forecasting, environmental data prediction, and agricultural yield projection, limited attention has been devoted to comprehensive surveys encompassing multiple objects concurrently. This article addresses this gap by comprehensively analyzing techniques employed in traffic, pandemics, disease forecasting, climate and weather prediction, agricultural yield estimation, and environmental data prediction. Furthermore, it elucidates challenges inherent in spatio-temporal forecasting and outlines potential avenues for future research exploration.

2025

Characterising Class Imbalance in Transportation Mode Detection: An Experimental Study

Autores
Muhammad, AR; Aguiar, A; Mendes-Moreira, J;

Publicação
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II

Abstract
This study investigates the impact of class imbalance and its potential interplay with other factors on machine learning models for transportation mode classification, utilising two real-world GPS trajectory datasets. A Random Forest model serves as the baseline, demonstrating strong performance on the relatively balanced dataset but experiencing significant degradation on the imbalanced one. To mitigate this effect, we explore various state-of-the-art class imbalance learning techniques, finding only marginal improvements. Resampling the fairly balanced dataset to replicate the imbalanced distribution suggests that factors beyond class imbalance are at play. We hypothesise and provide preliminary evidence for class overlap as a potential contributing factor, underscoring the need for further investigation into the broader range of classification difficulty factors. Our findings highlight the importance of balanced class distributions and a deeper understanding of factors such as class overlap in developing robust and generalisable models for transportation mode detection.

  • 8
  • 503