Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2000

Combining classification algorithms

Autores
Gama, J;

Publicação
AI COMMUNICATIONS

Abstract

2000

A Note on Two Simple Transformations for Improving the Efficiency of an ILP System

Autores
Costa, VS; Srinivasan, A; Camacho, R;

Publicação
Inductive Logic Programming, 10th International Conference, ILP 2000, London, UK, July 24-27, 2000, Proceedings

Abstract

2000

The effects of temporal aggregation on tests of linearity of a time series

Autores
Teles, P; Wei, WWS;

Publicação
COMPUTATIONAL STATISTICS & DATA ANALYSIS

Abstract
Time-series aggregates are often used in performing tests for departure from linearity. In this paper, we study the effects of temporal aggregation on testing for linearity, basing our analysis on both time- and frequency-domain tests. The results show that temporal aggregation weakens nonlinearity and reduces the power of the tests. The impact is severe. The use of aggregate data greatly hampers the detection of the nonlinear nature of the process.

1999

Iterative Part-of-Speech Tagging

Autores
Jorge, A; Andrade Lopes, Ad;

Publicação
Learning Language in Logic

Abstract
Assigning a category to a given word (tagging) depends on the particular word and on the categories (tags) of neighboring words. A theory that is able to assign tags to a given text can naturally be viewed as a recursive logic program. This article describes how iterative induction, a technique that has been proven powerful in the synthesis of recursive logic programs, has been applied to the task of part-of-speech tagging. The main strategy consists of inducing a succession T1, T2,…, Tn of theories, using in the induction of theory Ti all the previously induced theories. Each theory in the sequence may have lexical rules, context rules and hybrid ones. This iterative strategy is, to a large extent, independent of the inductive algorithm underneath. Here we consider one particular relational learning algorithm, CSC(RC), and we induce first order theories from positive examples and background knowledge that are able to successfully tag a relatively large corpus in Portuguese. © Springer-Verlag Berlin Heidelberg 2000.

1999

Iterative Induction of Logic Programs, An approach to logic program synthesis from incomplete specifications

Autores
Jorge, A;

Publicação
AI Commun.

Abstract

1999

Iterative induction of logic programs

Autores
Jorge, A;

Publicação
AI COMMUNICATIONS

Abstract
A methodology for the synthesis of function free definite logic programs from incomplete specifications, background knowledge and programming knowledge is presented. The methodology is implemented as a system SKILit and sub-systems SKIL and MONIC. The specification consists of positive and negative examples of the predicate to synthesize, together with its input/output mode declaration.

  • 500
  • 510