2004
Autores
Alves, MA; Jorge, A; Leal, JP;
Publicação
ADAPTIVE HYPERMEDIA AND ADAPOTIVE WEB-BASED SYSTEMS, PROCEEDINGS
Abstract
This Doctoral Consortium paper focuses on Extreme Adaptivity, a set of top level requirements for adaptive hypertext systems, which has resulted from one year of examining the adaptive hypertext landscape. The complete specification of a system, KnowledgeAtoms, is also given, mainly as an example of Extreme Adaptivity. Additional methodological elements are discussed.
2004
Autores
Veloso, M; Jorge, A; Azevedo, PJ;
Publicação
ICEIS 2004 - Proceedings of the Sixth International Conference on Enterprise Information Systems
Abstract
In this paper we describe an application of recommender systems to team building in a company or organization. The recommender system uses a collaborative filtering model based approach. Recommender models are sets of association rules extracted from the activity log of employees assigned to projects or tasks. Recommendation is performed at two levels: first by recommending a single team element given a partially built team; and second by recommending changes to a completed team. The methodology is applied to a case study with real data. The results are evaluated through experimental tests and one survey to potential users.
2004
Autores
Soares, C; Brazdil, PB; Kuba, P;
Publicação
MACHINE LEARNING
Abstract
The Support Vector Machine algorithm is sensitive to the choice of parameter settings. If these are not set correctly, the algorithm may have a substandard performance. Suggesting a good setting is thus an important problem. We propose a meta-learning methodology for this purpose and exploit information about the past performance of different settings. The methodology is applied to set the width of the Gaussian kernel. We carry out an extensive empirical evaluation, including comparisons with other methods (fixed default ranking; selection based on cross-validation and a heuristic method commonly used to set the width of the SVM kernel). We show that our methodology can select settings with low error while providing significant savings in time. Further work should be carried out to see how the methodology could be adapted to different parameter setting tasks.
2004
Autores
Vilalta, R; Carrier, CGG; Brazdil, P; Soares, C;
Publicação
IJCSA
Abstract
2004
Autores
Gama, J;
Publicação
MACHINE LEARNING
Abstract
In the context of classification problems, algorithms that generate multivariate trees are able to explore multiple representation languages by using decision tests based on a combination of attributes. In the regression setting, model trees algorithms explore multiple representation languages but using linear models at leaf nodes. In this work we study the effects of using combinations of attributes at decision nodes, leaf nodes, or both nodes and leaves in regression and classification tree learning. In order to study the use of functional nodes at different places and for different types of modeling, we introduce a simple unifying framework for multivariate tree learning. This framework combines a univariate decision tree with a linear function by means of constructive induction. Decision trees derived from the framework are able to use decision nodes with multivariate tests, and leaf nodes that make predictions using linear functions. Multivariate decision nodes are built when growing the tree, while functional leaves are built when pruning the tree. We experimentally evaluate a univariate tree, a multivariate tree using linear combinations at inner and leaf nodes, and two simplified versions restricting linear combinations to inner nodes and leaves. The experimental evaluation shows that all functional trees variants exhibit similar performance, with advantages in different datasets. In this study there is a marginal advantage of the full model. These results lead us to study the role of functional leaves and nodes. We use the bias-variance decomposition of the error, cluster analysis, and learning curves as tools for analysis. We observe that in the datasets under study and for classification and regression, the use of multivariate decision nodes has more impact in the bias component of the error, while the use of multivariate decision leaves has more impact in the variance component.
2004
Autores
Gama, J; Medas, P; Castillo, G; Rodrigues, P;
Publicação
ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2004
Abstract
Most of the work in machine learning assume that examples are generated at random according to some stationary probability distribution. In this work we study the problem of learning when the distribution that generate the examples changes over time. We present a method for detection of changes in the probability distribution of examples. The idea behind the drift detection method is to control the online error-rate of the algorithm. The training examples are presented in sequence. When a new training example is available, it is classified using the actual model. Statistical theory guarantees that while the distribution is stationary, the error will decrease. When the distribution changes, the error will increase. The method controls the trace of the online error of the algorithm. For the actual context we define a warning level, and a drift level. A new context is declared, if in a sequence of examples, the error increases reaching the warning level at example k(w), and the drift level at example k(d). This is an indication of a change in the distribution of the examples. The algorithm learns a new model using only the examples since k(w). The method was tested with a set of eight artificial datasets and a real world dataset. We used three learning algorithms: a perceptron, a neural network and a decision tree. The experimental results show a good performance detecting drift and with learning the new concept. We also observe that the method is independent of the learning algorithm.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.