2013
Autores
Moreira Matias, L; Gama, J; Ferreira, M; Mendes Moreira, J; Damas, L;
Publicação
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Abstract
Informed driving is increasingly becoming a key feature for increasing the sustainability of taxi companies. The sensors that are installed in each vehicle are providing new opportunities for automatically discovering knowledge, which, in return, delivers information for real-time decision making. Intelligent transportation systems for taxi dispatching and for finding time-saving routes are already exploring these sensing data. This paper introduces a novel methodology for predicting the spatial distribution of taxi-passengers for a short-term time horizon using streaming data. First, the information was aggregated into a histogram time series. Then, three time-series forecasting techniques were combined to originate a prediction. Experimental tests were conducted using the online data that are transmitted by 441 vehicles of a fleet running in the city of Porto, Portugal. The results demonstrated that the proposed framework can provide effective insight into the spatiotemporal distribution of taxi-passenger demand for a 30-min horizon.
2013
Autores
Rodrigues, PP; Pechenizkiy, M; Gama, J; Correia, RC; Liu, J; Traina, AJM; Lucas, PJF; Soda, P;
Publicação
CBMS
Abstract
2013
Autores
Gama, J; May, M; Marques, NC; Cortez, P; Ferreira, CA;
Publicação
UDM@IJCAI
Abstract
2013
Autores
Almeida, E; Ferreira, C; Gama, J;
Publicação
CEUR Workshop Proceedings
Abstract
Decision rules are one of the most expressive languages for machine learning. In this paper we present Adaptive Model Rules (AMRules), the first streaming rule learning algorithm for regression problems. In AMRules the antecedent of a rule is a conjunction of conditions on the attribute values, and the consequent is a linear combination of attribute values. Each rule in AMRules uses a Page-Hinkley test to detect changes in the process generating data and react to changes by pruning the rule set. In the experimental section we report the results of AMRules on benchmark regression problems, and compare the performance of our algorithm with other streaming regression algorithms. © 2013 IJCAI.
2013
Autores
Gama, J; Sebastiao, R; Rodrigues, PP;
Publicação
MACHINE LEARNING
Abstract
Most streaming decision models evolve continuously over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet convincingly addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of prequential error with forgetting mechanisms to provide reliable error estimators. We prove that, in stationary data and for consistent learning algorithms, the holdout estimator, the prequential error and the prequential error estimated over a sliding window or using fading factors, all converge to the Bayes error. The use of prequential error with forgetting mechanisms reveals to be advantageous in assessing performance and in comparing stream learning algorithms. It is also worthwhile to use the proposed methods for hypothesis testing and for change detection. In a set of experiments in drift scenarios, we evaluate the ability of a standard change detection algorithm to detect change using three prequential error estimators. These experiments point out that the use of forgetting mechanisms (sliding windows or fading factors) are required for fast and efficient change detection. In comparison to sliding windows, fading factors are faster and memoryless, both important requirements for streaming applications. Overall, this paper is a contribution to a discussion on best practice for performance assessment when learning is a continuous process, and the decision models are dynamic and evolve over time.
2013
Autores
Moreira Matias, L; Gama, J; Ferreira, M; Mendes Moreira, J; Damas, L;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2013
Abstract
Informed driving is becoming a key feature to increase the sustainability of taxi companies. Some recent works are exploring the data broadcasted by each vehicle to provide live information for decision making. In this paper, we propose a method to employ a learning model based on historical GPS data in a real-time environment. Our goal is to predict the spatiotemporal distribution of the Taxi-Passenger demand in a short time horizon. We did so by using learning concepts originally proposed to a well-known online algorithm: the perceptron [1]. The results were promising: we accomplished a satisfactory performance to output the next prediction using a short amount of resources.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.