2015
Autores
Dias, S; Brito, P;
Publicação
STATISTICAL ANALYSIS AND DATA MINING
Abstract
Histogram-valued variables are a particular kind of variables studied in Symbolic Data Analysis where to each entity under analysis corresponds a distribution that may be represented by a histogram or by a quantile function. Linear regression models for this type of data are necessarily more complex than a simple generalization of the classical model: the parameters cannot be negative; still the linear relation between the variables must be allowed to be either direct or inverse. In this work, we propose a new linear regression model for histogram-valued variables that solves this problem, named Distribution and Symmetric Distribution Regression Model. To determine the parameters of this model, it is necessary to solve a quadratic optimization problem, subject to non-negativity constraints on the unknowns; the error measure between the predicted and observed distributions uses the Mallows distance. As in classical analysis, the model is associated with a goodness-of-fit measure whose values range between 0 and 1. Using the proposed model, applications with real and simulated data are presented.
2015
Autores
Venturini, G; Brito, P;
Publicação
Symbolic Data Analysis and Visualization
Abstract
2015
Autores
Brito, P; Noirhomme Fraiture, M; Arroyo, J;
Publicação
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
Abstract
2015
Autores
Silva, APD; Brito, P;
Publicação
JOURNAL OF CLASSIFICATION
Abstract
Building on probabilistic models for interval-valued variables, parametric classification rules, based on Normal or Skew-Normal distributions, are derived for interval data. The performance of such rules is then compared with distancebased methods previously investigated. The results show that Gaussian parametric approaches outperform Skew-Normal parametric and distance-based ones in most conditions analyzed. In particular, with heterocedastic data a quadratic Gaussian rule always performs best. Moreover, restricted cases of the variance-covariance matrix lead to parsimonious rules which for small training samples in heterocedastic problems can outperform unrestricted quadratic rules, even in some cases where the model assumed by these rules is not true. These restrictions take into account the particular nature of interval data, where observations are defined by both MidPoints and Ranges, which may or may not be correlated. Under homocedastic conditions linear Gaussian rules are often the best rules, but distance-based methods may perform better in very specific conditions.
2015
Autores
Brito, P; Silva, APD; Dias, JG;
Publicação
INTELLIGENT DATA ANALYSIS
Abstract
In this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data.
2015
Autores
Brito, P;
Publicação
Handbook of Cluster Analysis
Abstract
In this chapter, we present clustering methods for symbolic data. We start by recalling that symbolic data is data presenting inherent variability, and the motivations for the introduction of this new paradigm.We then proceed by defining the different types of variables that allow for the representation of symbolic data, and recall some distance measures appropriate for the new data types. Then we present clustering methods for different types of symbolic data, both hierarchical and nonhierarchical. An application illustrates two well-known methods for clustering symbolic data. © 2016 by Taylor & Francis Group, LLC.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.